991 resultados para Weed Control
Resumo:
Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.
Resumo:
Summary
Resumo:
Selostus: Kolme viljojen mekaanista rikkakasvintorjuntamentelmää
Resumo:
Field studies were conducted over 3 years in southeast Buenos Aires, Argentina, to determine the critical period of weed control in maize (Zea mays L.). The treatments consisted of two different periods of weed interference, a critical weed-free period, and a critical time of weed removal. The Gompertz and logistic equations were fitted to relative yields representing the critical weed-free and the critical time of weed removal, respectively. Accumulated thermal units were used to describe each period of weed-free or weed removal. The critical weed-free period and the critical time of weed removal ranged from 222 to 416 and 128 to 261 accumulated thermal units respectively, to prevent yield losses of 2.5%. Weed biomass proved to be inverse to the crop yield for all the years studied. When weeds competed with the crop from emergence, a large increase in weed biomass was achieved 10 days after crop emergence. However, few weed seedlings emerged and prospered after the 5-6 leaf maize stage (10-20 days after emergence).
Resumo:
Soil solarization is a technique used for weed and plant disease control in regions with high levels of solar radiation. The effect of solarization (0, 3, 6, and 9 weeks) upon weed populations, carrot (Daucus carota L. cv. Brasília) yield and nematode infestation in carrot roots was studied in São Luís (2º35' S; 44º10' W), MA, Brazil, using transparent polyethylene films (100 and 150 mm of thickness). The maximum temperature at 5 cm of depth was about 10ºC warmer in solarized soil than in control plots. In the study 20 weed types were recorded. Solarization reduced weed biomass and density in about 50% of weed species, including Cyperus spp., Chamaecrista nictans var. paraguariensis (Chod & Hassl.) Irwin & Barneby, Marsypianthes chamaedrys (Vahl) O. Kuntze, Mitracarpus sp., Mollugo verticillata L., Sebastiania corniculata M. Arg., and Spigelia anthelmia L. Approximately 40% of species in the weed flora were not affected by soil mulching. Furthermore, seed germination of Commelina benghalensis L. was increased by soil solarization. Marketable yield of carrots was greater in solarized soil than in the unsolarized one. It was concluded that solarization for nine weeks increases carrot yield and is effective for controlling more than half of the weed species recorded. Mulching was not effective for controlling root-knot nematodes in carrot.
Resumo:
Abstract
Resumo:
The objective of this work was to evaluate the influence of weeding frequency on cultivar Centralmex green corn yield. Two experiments were conducted in Mossoró-RN (Brazil), with the use of sprinkler irrigation. A random block design with four replicates was used. It was observed that the total number and weight (TW) of unhusked green ears, the number and weight of marketable unhusked ears and the number and weight of marketable husked ears were reduced under no weeding treatment. The number timing of weedings did not influence green corn yield, except for one weeding at 60 DAP, which was equivalent to the "no weeding" treatment, for TW. When maize is marketed considering the total number of green ears, higher net income is obtained when one weeding is carried out 45 days after planting.
Resumo:
This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum) were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus at doses recommended for bean crop, these herbicides may be applied to control weeds in coffee and bean intercropping systems by spraying the entire area.
Resumo:
Intercropping combined with competitive maize cultivars can reduce the use of herbicides to control weeds. The objective of this work was to evaluate the effects of intercropping cowpea and maize, as well as hand-weeding on maize morphology and yield. The experimental design was in randomized complete blocks, with treatments arranged in split-plots and five replications. The plots consisted of four maize cultivars (BA 8512, BA 9012, EX 4001, EX 6004) and the split-plots consisted of the following treatments: no-weeding; twice hand-weeding (20 and 40 days after sowing); and intercropping with cowpea ('Sempre Verde' cultivar), both maize and cowpea sown at the same time. The variables evaluated were: maize fresh green ears and grain yield; characteristics of internodes, leaves, tassels, ears, grains; plant height and ear insertion height; number of weed plants and species; fresh and dry biomass of weed species and cowpea. Ten weed species were outstanding during the experiment, many of them from the Poaceae family. No interactions were found between weed control method and maize cultivars for most variables evaluated; and plants from hand-weeded split-plots showed superior mean values compared to plants from non-weeded and intercropped split-plots, both not differing from each other. The cowpea was inefficient in controlling weed, reducing the maize yields and not producing any grain. The maize cultivars 'BA 8512' and 'BA 9012 showed the highest mean green ear yield, and the highest grain yield in hand-weeded, no-weeded and intercropped split-plots. On the other hand, the maize cultivar 'EX 6004' showed such high means only in no-weeded and intercropped split-plots. 'EX 4001 presented the worst means in these variables for hand-weeded, no-weeded ant intercropped split-plots.
Resumo:
Two field experiments were conducted in two successive seasons, 2005/2006 and 2006/2007, to determine whether management can improve faba bean competitiveness with weeds, thus helping to achieve its yield potential. The experiment included five treatments, composed of organic and mineral fertilizers, alone and mixed at different rates, along with a control and six weed control treatments, including oxadiargyl, prometryn, hand hoeing treatments alone or mixed with the herbicides, and a nonweeded treatment (control).The herbicide treatments were not superior to the two hand-hoeing treatments. Using compost favored growth and yield of faba bean more than of weeds. Adding fertilizer also improved most yield parameters. Application of compost alone or combined with 50 or 100% of the recommended NPK rate improved faba bean growth in terms of net assimilation rate, specific leaf area, and leaf weight ratio as components of relative growth rate. This improvement in growth resulted in increase of seed yield, yield components and protein of faba bean. Faba bean yield performance improved under interactive fertilizer effects and weed control treatments as growth improved, as a result of nutrient release from fertilizers and weed control.
Resumo:
The majority of cotton grown commercially in the world has white lint, but recently, there has been a growing interest in colored lint cotton in several countries, including Brazil. The use of naturally-colored fiber reduces chemical pollution. The objective of this paper was to evaluate cotton cultivar fiber yield in response to weed control via intercropping with gliricídia. Cultivars BRS-Verde (greenish fibers), BRS-Rubi (reddish brown fibers), BRS-Safira (brown fibers), and BRS-187 8H (white fibers) were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after transplanting), and cotton intercropped with gliricídia. In the intercropped treatment, gliricídia was planted between rows of cotton plants, using one seedling pit-1, in pits spaced 50.0 cm apart. Twelve weed species predominated in the experiment, many of them belonging to the Poaceae family. Weeds occurred at different frequencies and in a non-uniform manner in the experimental area. Cultivars did not influence weed dry matter. Intercropping with gliricídia reduced weed dry matter but did not prevent reductions in cotton fiber and seed cotton yield, which were higher in hoed plots. Cultivar BRS Safira had the highest fiber yield, but no differences were observed between cultivars regarding to seed cotton yield.
Resumo:
A reduction in herbicide use is one of modern agriculture's main interests and several alternatives are being investigated with this objective, including intercropping. Gliricídia (Gliricidia sepium) mulch has no allelopathic effect on corn or beans but significantly decreased the population of some weed species. The objective of this study was to evaluate green ear and grain yield in corn cultivars as a response to weed control achieved via intercropping with gliricidia. A completely randomized block design with five replicates and split-plots was used. Cultivars AG 1051, AG 2060, BRS 2020, and PL 6880 (assigned to plots) were submitted to the following treatments: no hoeing, hoeing (performed at 20 and 40 days after sowing the corn), and corn intercropped with gliricidia. Gliricidia was grown in a transplanting system to ensure uniform germination and fast establishment in the field. Seeding was made in 200-cell trays with one seed per cell (35 mL volume). The plants emerged two to three days after sowing and were transplanted to a permanent site two to three days after emergence. Corn was sown on the same day gliricidia was transplanted. Sixteen weed species occurred at different frequencies, with uneven distribution in the experimental area. Cultivars AG 1051 and AG 2060 were the best with reference to most characteristics employed to evaluate green corn yield. Cultivar AG 1051 provided the highest grain yield. The highest green ear yield and grain yield values were obtained with hoeing. However, the fact that intercropped plots showed intermediate yield between the values obtained for hoed and non-hoed plots indicates that gliricidia was beneficial to corn, and exerted a certain level of weed control.
Resumo:
Herbicides have simplified weed control, but the use of herbicides, besides being costly, resulted in the selection of herbicide-resistant weed biotypes and has become an environmental contamination factor. Herbicide use reduction is one of the goals of modern agriculture, with several alternatives being investigated, including intercropping. The objective of this study was to evaluate the effects of cowpea and corn cultivar intercropping on weed control and corn green-ear (immature ears with 80% humidity grains) and grain yield. A completely randomized block design with split-plots and four replications was used. AG 1051, AG 2060 and PL 6880 corn cultivars (assigned to plots) were submitted to the four treatments: no weeding, two hoe-weeding (22 and 41 days after planting), and intercropping with cowpea (BR 14 and IPA 206 cultivars, with indeterminate growth). The cowpea was planted (with corn planting) between the corn rows, in pits 1.0 m apart, with two plants per pit. The corn cultivars did not differ from each other as to weed density (WD), fresh above-ground weed biomass (WB), green-ear yield and grain yields. Higher WD and WB mean values were found in no weeding subplots; lower mean values in two hoe-weeding subplots; and intermediate mean values in intercropped subplots, indicating that cowpea plants had, to a certain extent, control over weeds. The no-weeded plots and the intercropped plots had lower green-ear and grain yields. Although the cowpea cultivars had a certain control over weeds (mean reductions of 22.5 and 18.3%, in terms of green matter density and weight of the above-ground part of weeds, respectively), they also competed against the corn plants, leading to yield reduction (mean reductions of 17.0 and 32% in green ear and grain yield, respectively). The cowpea cultivars did not produce grain, certainly due to the strong competition exerted by the corn and weeds on cowpea plants.