930 resultados para Web access characterization and modeling
Resumo:
Temporal locality of reference in Web request streams emerges from two distinct phenomena: the popularity of Web objects and the {\em temporal correlation} of requests. Capturing these two elements of temporal locality is important because it enables cache replacement policies to adjust how they capitalize on temporal locality based on the relative prevalence of these phenomena. In this paper, we show that temporal locality metrics proposed in the literature are unable to delineate between these two sources of temporal locality. In particular, we show that the commonly-used distribution of reference interarrival times is predominantly determined by the power law governing the popularity of documents in a request stream. To capture (and more importantly quantify) both sources of temporal locality in a request stream, we propose a new and robust metric that enables accurate delineation between locality due to popularity and that due to temporal correlation. Using this metric, we characterize the locality of reference in a number of representative proxy cache traces. Our findings show that there are measurable differences between the degrees (and sources) of temporal locality across these traces, and that these differences are effectively captured using our proposed metric. We illustrate the significance of our findings by summarizing the performance of a novel Web cache replacement policy---called GreedyDual*---which exploits both long-term popularity and short-term temporal correlation in an adaptive fashion. Our trace-driven simulation experiments (which are detailed in an accompanying Technical Report) show the superior performance of GreedyDual* when compared to other Web cache replacement policies.
Resumo:
Joint experimental and theoretical work is presented on two quadrupolar D-pi-A-pi-D chromophores characterized by the same bulky donor (D) group and two different central cores. The first chromophore, a newly synthesized species with a malononitrile-based acceptor (A) group, has a V-shaped structure that makes its absorption spectrum very broad, covering most of the visible region. The second chromophore has a squaraine-based core and therefore a linear structure, as also evinced from its absorption spectra. Both chromophores show an anomalous red shift of the absorption band upon increasing solvent polarity, a feature that is ascribed to the large, bulky structure of the moleCules. For these molecules, the basic description of polar solvation in terms of a uniform reaction field fails. Indeed, a simple extension of the model to account for two independent reaction fields associated with the two molecular arms quantitatively reproduces the observed linear absorption and fluorescence as well as fluorescence anisotropy spectra, fully rationalizing their nontrivial dependence on solvent polarity. The model derived from the analysis of linear spectra is adopted to predict nonlinear spectra and specifically hyper-Rayleigh scattering and two-photon absorption spectra. In polar solvents, the V-shaped chromophore is predicted to have a large HRS response in a wide spectral region (approximately 600-1300 nm). Anomalously large and largely solvent-dependent HRS responses for the linear chromophores are ascribed to symmetry lowering induced by polar solvation and amplified in this bulky system by the presence of two reaction fields.
Resumo:
n-heptane/air premixed turbulent flames in the high-Karlovitz portion of the thin reaction zone regime are characterized and modeled in this thesis using Direct Numerical Simulations (DNS) with detailed chemistry. In order to perform these simulations, a time-integration scheme that can efficiently handle the stiffness of the equations solved is developed first. A first simulation with unity Lewis number is considered in order to assess the effect of turbulence on the flame in the absence of differential diffusion. A second simulation with non-unity Lewis numbers is considered to study how turbulence affects differential diffusion. In the absence of differential diffusion, minimal departure from the 1D unstretched flame structure (species vs. temperature profiles) is observed. In the non-unity Lewis number case, the flame structure lies between that of 1D unstretched flames with "laminar" non-unity Lewis numbers and unity Lewis number. This is attributed to effective Lewis numbers resulting from intense turbulent mixing and a first model is proposed. The reaction zone is shown to be thin for both flames, yet large chemical source term fluctuations are observed. The fuel consumption rate is found to be only weakly correlated with stretch, although local extinctions in the non-unity Lewis number case are well correlated with high curvature. These results explain the apparent turbulent flame speeds. Other variables that better correlate with this fuel burning rate are identified through a coordinate transformation. It is shown that the unity Lewis number turbulent flames can be accurately described by a set of 1D (in progress variable space) flamelet equations parameterized by the dissipation rate of the progress variable. In the non-unity Lewis number flames, the flamelet equations suggest a dependence on a second parameter, the diffusion of the progress variable. A new tabulation approach is proposed for the simulation of such flames with these dimensionally-reduced manifolds.
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.
Resumo:
For the first time in the open literature we present a full characterization of the performance of receiver diversity for the on-body channels found in body area networks. The study involved three commonly encountered diversity combining schemes: selection combination (SC), maximal ratio combining (MRC) and equal gain combining (EGC). Measurements were conducted for both stationary and mobile user scenarios in an anechoic chamber and open office area environment. Achievable diversity gain for various on-body dual branch diversity receivers, consisting of horizontal and vertical spatially separated antennas, was found to be dependent upon transmitter-receive array separation, user state and level of multipath contribution from the local environment. The maximum diversity gain (6.4 dB) was observed for a horizontal two branch MRC combiner while the transmitter and receiver were on opposite sides of the body, and the user was mobile in the open office area. A novel statistical characterization of the fading experienced in on-body diversity channels is also performed using purposely derived first and second order diversity statistics for combiners operating in Nakagami fading.
Resumo:
During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OCn][Sal]) with n = 3–11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
For many years, RF and analog integrated circuits have been mainly developed using bipolar and compound semiconductor technologies due to their better performance. In the last years, the advance made in CMOS technology allowed analog and RF circuits to be built with such a technology, but the use of CMOS technology in RF application instead of bipolar technology has brought more issues in terms of noise. The noise cannot be completely eliminated and will therefore ultimately limit the accuracy of measurements and set a lower limit on how small signals can be detected and processed in an electronic circuit. One kind of noise which affects MOS transistors much more than bipolar ones is the low-frequency noise. In MOSFETs, low-frequency noise is mainly of two kinds: flicker or 1/f noise and random telegraph signal noise (RTS). The objective of this thesis is to characterize and to model the low-frequency noise by studying RTS and flicker noise under both constant and switched bias conditions. The effect of different biasing schemes on both RTS and flicker noise in time and frequency domain has been investigated.
Resumo:
The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.
Resumo:
A two-dimensional, 2D, finite-difference time-domain (FDTD) method is used to analyze two different models of multi-conductor transmission lines (MTL). The first model is a two-conductor MTL and the second is a threeconductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method is used to analyze a three-patch microstrip parasitic array. While the MTL analysis is entirely in time-domain, the microstrip parasitic array is a study of scattering parameter Sn in the frequency-domain. The results clearly indicate that FDTD is an efficient and accurate tool to model and analyze multiconductor transmission line as well as microstrip antennas and arrays.
Resumo:
O presente trabalho tem por objectivo estudar a caracterização e modelação de arquitecturas de rádio frequência para aplicações em rádios definidos por software e rádios cognitivos. O constante aparecimento no mercado de novos padrões e tecnologias para comunicações sem fios têm levantado algumas limitações à implementação de transceptores rádio de banda larga. Para além disso, o uso de sistemas reconfiguráveis e adaptáveis baseados no conceito de rádio definido por software e rádio cognitivo assegurará a evolução para a próxima geração de comunicações sem fios. A ideia base desta tese passa por resolver alguns problemas em aberto e propor avanços relevantes, tirando para isso partido das capacidades providenciadas pelos processadores digitais de sinal de forma a melhorar o desempenho global dos sistemas propostos. Inicialmente, serão abordadas várias estratégias para a implementação e projecto de transceptores rádio, concentrando-se sempre na aplicabilidade específica a sistemas de rádio definido por software e rádio cognitivo. Serão também discutidas soluções actuais de instrumentação capaz de caracterizar um dispositivo que opere simultaneamente nos domínios analógico e digital, bem como, os próximos passos nesta área de caracterização e modelação. Além disso, iremos apresentar novos formatos de modelos comportamentais construídos especificamente para a descrição e caracterização não-linear de receptores de amostragem passa-banda, bem como, para sistemas nãolineares que utilizem sinais multi-portadora. Será apresentada uma nova arquitectura suportada na avaliação estatística dos sinais rádio que permite aumentar a gama dinâmica do receptor em situações de multi-portadora. Da mesma forma, será apresentada uma técnica de maximização da largura de banda de recepção baseada na utilização do receptor de amostragem passa-banda no formato complexo. Finalmente, importa referir que todas as arquitecturas propostas serão acompanhadas por uma introdução teórica e simulações, sempre que possível, sendo após isto validadas experimentalmente por protótipos laboratoriais.
Resumo:
A key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.