803 resultados para Web Services Security, Denial Of Service, Client Puzzle, XML Gateway, SOAP Security


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interoperable and loosely-coupled web services architecture, while beneficial, can be resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker can use a relatively insignificant amount of resources to exhaust the computational resources of a web service. We investigate the effectiveness of defending web services from DoS attacks using client puzzles, a cryptographic countermeasure which provides a form of gradual authentication by requiring the client to solve some computationally difficult problems before access is granted. In particular, we describe a mechanism for integrating a hash-based puzzle into existing web services frameworks and analyze the effectiveness of the countermeasure using a variety of scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks. They can also mitigate certain types of semantic-based attacks, although they may not be the optimal solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denial-of-service (DoS) attacks are a growing concern to networked services like the Internet. In recent years, major Internet e-commerce and government sites have been disabled due to various DoS attacks. A common form of DoS attack is a resource depletion attack, in which an attacker tries to overload the server's resources, such as memory or computational power, rendering the server unable to service honest clients. A promising way to deal with this problem is for a defending server to identify and segregate malicious traffic as earlier as possible. Client puzzles, also known as proofs of work, have been shown to be a promising tool to thwart DoS attacks in network protocols, particularly in authentication protocols. In this thesis, we design efficient client puzzles and propose a stronger security model to analyse client puzzles. We revisit a few key establishment protocols to analyse their DoS resilient properties and strengthen them using existing and novel techniques. Our contributions in the thesis are manifold. We propose an efficient client puzzle that enjoys its security in the standard model under new computational assumptions. Assuming the presence of powerful DoS attackers, we find a weakness in the most recent security model proposed to analyse client puzzles and this study leads us to introduce a better security model for analysing client puzzles. We demonstrate the utility of our new security definitions by including two hash based stronger client puzzles. We also show that using stronger client puzzles any protocol can be converted into a provably secure DoS resilient key exchange protocol. In other contributions, we analyse DoS resilient properties of network protocols such as Just Fast Keying (JFK) and Transport Layer Security (TLS). In the JFK protocol, we identify a new DoS attack by applying Meadows' cost based framework to analyse DoS resilient properties. We also prove that the original security claim of JFK does not hold. Then we combine an existing technique to reduce the server cost and prove that the new variant of JFK achieves perfect forward secrecy (the property not achieved by original JFK protocol) and secure under the original security assumptions of JFK. Finally, we introduce a novel cost shifting technique which reduces the computation cost of the server significantly and employ the technique in the most important network protocol, TLS, to analyse the security of the resultant protocol. We also observe that the cost shifting technique can be incorporated in any Diffine{Hellman based key exchange protocol to reduce the Diffie{Hellman exponential cost of a party by one multiplication and one addition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Client puzzles are moderately-hard cryptographic problems neither easy nor impossible to solve that can be used as a counter-measure against denial of service attacks on network protocols. Puzzles based on modular exponentiation are attractive as they provide important properties such as non-parallelisability, deterministic solving time, and linear granularity. We propose an efficient client puzzle based on modular exponentiation. Our puzzle requires only a few modular multiplications for puzzle generation and verification. For a server under denial of service attack, this is a significant improvement as the best known non-parallelisable puzzle proposed by Karame and Capkun (ESORICS 2010) requires at least 2k-bit modular exponentiation, where k is a security parameter. We show that our puzzle satisfies the unforgeability and difficulty properties defined by Chen et al. (Asiacrypt 2009). We present experimental results which show that, for 1024-bit moduli, our proposed puzzle can be up to 30 times faster to verify than the Karame-Capkun puzzle and 99 times faster than the Rivest et al.'s time-lock puzzle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The loosely-coupled and dynamic nature of web services architectures has many benefits, but also leads to an increased vulnerability to denial of service attacks. While many papers have surveyed and described these vulnerabilities, they are often theoretical and lack experimental data to validate them, and assume an obsolete state of web services technologies. This paper describes experiments involving several denial of service vulnerabilities in well-known web services platforms, including Java Metro, Apache Axis, and Microsoft .NET. The results both confirm and deny the presence of some of the most well-known vulnerabilities in web services technologies. Specifically, major web services platforms appear to cope well with attacks that target memory exhaustion. However, attacks targeting CPU-time exhaustion are still effective, regardless of the victim’s platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Client puzzles are meant to act as a defense against denial of service (DoS) attacks by requiring a client to solve some moderately hard problem before being granted access to a resource. However, recent client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen et al., 2009) do not ensure that solving n puzzles is n times harder than solving one puzzle. Motivated by examples of puzzles where this is the case, we present stronger definitions of difficulty for client puzzles that are meaningful in the context of adversaries with more computational power than required to solve a single puzzle. A protocol using strong client puzzles may still not be secure against DoS attacks if the puzzles are not used in a secure manner. We describe a security model for analyzing the DoS resistance of any protocol in the context of client puzzles and give a generic technique for combining any protocol with a strong client puzzle to obtain a DoS-resistant protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions. © 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first detailed application of Meadows’s cost-based modelling framework to the analysis of JFK, an Internet key agreement protocol. The analysis identifies two denial of service attacks against the protocol that are possible when an attacker is willing to reveal the source IP address. The first attack was identified through direct application of a cost-based modelling framework, while the second was only identified after considering coordinated attackers. Finally, we demonstrate how the inclusion of client puzzles in the protocol can improve denial of service resistance against both identified attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denial-of-service attacks (DoS) and distributed denial-of-service attacks (DDoS) attempt to temporarily disrupt users or computer resources to cause service un- availability to legitimate users in the internetworking system. The most common type of DoS attack occurs when adversaries °ood a large amount of bogus data to interfere or disrupt the service on the server. The attack can be either a single-source attack, which originates at only one host, or a multi-source attack, in which multiple hosts coordinate to °ood a large number of packets to the server. Cryptographic mechanisms in authentication schemes are an example ap- proach to help the server to validate malicious tra±c. Since authentication in key establishment protocols requires the veri¯er to spend some resources before successfully detecting the bogus messages, adversaries might be able to exploit this °aw to mount an attack to overwhelm the server resources. The attacker is able to perform this kind of attack because many key establishment protocols incorporate strong authentication at the beginning phase before they can iden- tify the attacks. This is an example of DoS threats in most key establishment protocols because they have been implemented to support con¯dentiality and data integrity, but do not carefully consider other security objectives, such as availability. The main objective of this research is to design denial-of-service resistant mechanisms in key establishment protocols. In particular, we focus on the design of cryptographic protocols related to key establishment protocols that implement client puzzles to protect the server against resource exhaustion attacks. Another objective is to extend formal analysis techniques to include DoS- resistance. Basically, the formal analysis approach is used not only to analyse and verify the security of a cryptographic scheme carefully but also to help in the design stage of new protocols with a high level of security guarantee. In this research, we focus on an analysis technique of Meadows' cost-based framework, and we implement DoS-resistant model using Coloured Petri Nets. Meadows' cost-based framework is directly proposed to assess denial-of-service vulnerabil- ities in the cryptographic protocols using mathematical proof, while Coloured Petri Nets is used to model and verify the communication protocols using inter- active simulations. In addition, Coloured Petri Nets are able to help the protocol designer to clarify and reduce some inconsistency of the protocol speci¯cation. Therefore, the second objective of this research is to explore vulnerabilities in existing DoS-resistant protocols, as well as extend a formal analysis approach to our new framework for improving DoS-resistance and evaluating the performance of the new proposed mechanism. In summary, the speci¯c outcomes of this research include following results; 1. A taxonomy of denial-of-service resistant strategies and techniques used in key establishment protocols; 2. A critical analysis of existing DoS-resistant key exchange and key estab- lishment protocols; 3. An implementation of Meadows's cost-based framework using Coloured Petri Nets for modelling and evaluating DoS-resistant protocols; and 4. A development of new e±cient and practical DoS-resistant mechanisms to improve the resistance to denial-of-service attacks in key establishment protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Denial of Service Testing Framework (dosTF) being developed as part of the joint India-Australia research project for ‘Protecting Critical Infrastructure from Denial of Service Attacks’ allows for the construction, monitoring and management of emulated Distributed Denial of Service attacks using modest hardware resources. The purpose of the testbed is to study the effectiveness of different DDoS mitigation strategies and to allow for the testing of defense appliances. Experiments are saved and edited in XML as abstract descriptions of an attack/defense strategy that is only mapped to real resources at run-time. It also provides a web-application portal interface that can start, stop and monitor an attack remotely. Rather than monitoring a service under attack indirectly, by observing traffic and general system parameters, monitoring of the target application is performed directly in real time via a customised SNMP agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial-of-Service (DDoS) attacks continue to be one of the most pernicious threats to the delivery of services over the Internet. Not only are DDoS attacks present in many guises, they are also continuously evolving as new vulnerabilities are exploited. Hence accurate detection of these attacks still remains a challenging problem and a necessity for ensuring high-end network security. An intrinsic challenge in addressing this problem is to effectively distinguish these Denial-of-Service attacks from similar looking Flash Events (FEs) created by legitimate clients. A considerable overlap between the general characteristics of FEs and DDoS attacks makes it difficult to precisely separate these two classes of Internet activity. In this paper we propose parameters which can be used to explicitly distinguish FEs from DDoS attacks and analyse two real-world publicly available datasets to validate our proposal. Our analysis shows that even though FEs appear very similar to DDoS attacks, there are several subtle dissimilarities which can be exploited to separate these two classes of events.