905 resultados para Web Mining, Data Mining, User Topic Model, Web User Profiles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social media data are produced continuously by a large and uncontrolled number of users. The dynamic nature of such data requires the sentiment and topic analysis model to be also dynamically updated, capturing the most recent language use of sentiments and topics in text. We propose a dynamic Joint Sentiment-Topic model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current sentiment-topic-specific word distributions are generated according to the word distributions at previous epochs. We study three different ways of accounting for such dependency information: (1) Sliding window where the current sentiment-topic word distributions are dependent on the previous sentiment-topic-specific word distributions in the last S epochs; (2) skip model where history sentiment topic word distributions are considered by skipping some epochs in between; and (3) multiscale model where previous long- and shorttimescale distributions are taken into consideration. We derive efficient online inference procedures to sequentially update the model with newly arrived data and show the effectiveness of our proposed model on the Mozilla add-on reviews crawled between 2007 and 2011. © 2013 ACM 2157-6904/2013/12-ART5 $ 15.00.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in ubiquitous and pervasive technologies have made it possible to recognise activities of daily living through non-intrusive sensors. The data captured from these sensors are required to be classified using various machine learning or knowledge driven techniques to infer and recognise activities. The process of discovering the activities and activity-object patterns from the sensors tagged to objects as they are used is critical to recognising the activities. In this paper, we propose a topic model process of discovering activities and activity-object patterns from the interactions of low level state-change sensors. We also develop a recognition and segmentation algorithm to recognise activities and recognise activity boundaries. Experimental results we present validates our framework and shows it is comparable to existing approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of our study was to assess the feasibility of minimally invasive digestive anastomosis using a modular flexible magnetic anastomotic device made up of a set of two flexible chains of magnetic elements. The assembly possesses a non-deployed linear configuration which allows it to be introduced through a dedicated small-sized applicator into the bowel where it takes the deployed form. A centering suture allows the mating between the two parts to be controlled in order to include the viscerotomy between the two magnetic rings and the connected viscera. METHODS AND PROCEDURES: Eight pigs were involved in a 2-week survival experimental study. In five colorectal anastomoses, the proximal device was inserted by a percutaneous endoscopic technique, and the colon was divided below the magnet. The distal magnet was delivered transanally to connect with the proximal magnet. In three jejunojejunostomies, the first magnetic chain was injected in its linear configuration through a small enterotomy. Once delivered, the device self-assembled into a ring shape. A second magnet was injected more distally through the same port. The centering sutures were tied together extracorporeally and, using a knot pusher, magnets were connected. Ex vivo strain testing to determine the compression force delivered by the magnetic device, burst pressure of the anastomosis, and histology were performed. RESULTS: Mean operative time including endoscopy was 69.2 ± 21.9 min, and average time to full patency was 5 days for colorectal anastomosis. Operative times for jejunojejunostomies were 125, 80, and 35 min, respectively. The postoperative period was uneventful. Burst pressure of all anastomoses was ≥ 110 mmHg. Mean strain force to detach the devices was 6.1 ± 0.98 and 12.88 ± 1.34 N in colorectal and jejunojejunal connections, respectively. Pathology showed a mild-to-moderate inflammation score. CONCLUSIONS: The modular magnetic system showed enormous potential to create minimally invasive digestive anastomoses, and may represent an alternative to stapled anastomoses, being easy to deliver, effective, and low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.