986 resultados para Weather radar networks
Resumo:
Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.
Resumo:
Mesoscale weather phenomena, such as the sea breeze circulation or lake effect snow bands, are typically too large to be observed at one point, yet too small to be caught in a traditional network of weather stations. Hence, the weather radar is one of the best tools for observing, analyzing and understanding their behavior and development. A weather radar network is a complex system, which has many structural and technical features to be tuned, from the location of each radar to the number of pulses averaged in the signal processing. These design parameters have no universal optimal values, but their selection depends on the nature of the weather phenomena to be monitored as well as on the applications for which the data will be used. The priorities and critical values are different for forest fire forecasting, aviation weather service or the planning of snow ploughing, to name a few radar-based applications. The main objective of the work performed within this thesis has been to combine knowledge of technical properties of the radar systems and our understanding of weather conditions in order to produce better applications able to efficiently support decision making in service duties for modern society related to weather and safety in northern conditions. When a new application is developed, it must be tested against ground truth . Two new verification approaches for radar-based hail estimates are introduced in this thesis. For mesoscale applications, finding the representative reference can be challenging since these phenomena are by definition difficult to catch with surface observations. Hence, almost any valuable information, which can be distilled from unconventional data sources such as newspapers and holiday shots is welcome. However, as important as getting data is to obtain estimates of data quality, and to judge to what extent the two disparate information sources can be compared. The presented new applications do not rely on radar data alone, but ingest information from auxiliary sources such as temperature fields. The author concludes that in the future the radar will continue to be a key source of data and information especially when used together in an effective way with other meteorological data.
Resumo:
Locate full-text(opens in a new window)|View at Publisher|
Export
| Download
| More...
Atmospheric Measurement Techniques
Volume 8, Issue 5, 27 May 2015, Pages 2183-2193
Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services (Article)
Angulo, I.a,
Grande, O.a,
Jenn, D.b,
Guerra, D.a,
De La Vega, D.a
a University of the Basque Country (UPV/EHU), Bilbao, Spain
b Naval Postgraduate School, Monterey, United States
View references (28)
Abstract
The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver.
For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam.
This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.
Resumo:
A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with three additional laser disdrometers. The disdrometers are capable of measuring the raindrop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This setup allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. For the campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps was analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured at a distance of 20 km from the radar. Radome attenuation reached values up to 14 dB which was found to be consistent with an empirical radome attenuation vs. rain intensity relation that was previously developed for the same radar type. In contrast to previous work, our results suggest that radome attenuation should be estimated individually for every view direction of the radar in order to obtain homogenous reflectivity fields.
Resumo:
Bibliography: p. 28-29.
Resumo:
The authors present a super-fast scanning (SFS) technique for phased array weather radar applications. The fast scanning feature of the SFS technique is described and its drawbacks identified. Techniques which combat these drawbacks are also presented. A concept design phased array radar system (CDPAR) is used as a benchmark to compare the performance of a conventional scanning phased array radar system with the SFS technique. It is shown that the SFS technique, in association with suitable waveform processing, can realise four times the scanning speed and achieve similar accuracy compared to the conventional phased array benchmark.
Resumo:
Includes bibliographical references (p. 36).
Resumo:
This work presents a new approach for rainfall measurements making use of weather radar data for real time application to the radar systems operated by institute of Meteorological Research (IPMET) - UNESP - Bauru - SP-Brazil. Several real time adjustment techniques has been presented being most of them based on surface rain-gauge network. However, some of these methods do not regard the effect of the integration area, time integration and distance rainfall-radar. In this paper, artificial neural networks have been applied for generate a radar reflectivity-rain relationships which regard all effects described above. To evaluate prediction procedure, cross validation was performed using data from IPMET weather Doppler radar and rain-gauge network under the radar umbrella. The preliminary results were acceptable for rainfalls prediction. The small errors observed result from the spatial density and the time resolution of the rain-gauges networks used to calibrate the radar.