875 resultados para Wearable cameras
Resumo:
Colour is everywhere in our daily lives and impacts things like our mood, yet we rarely take notice of it. One method of capturing and analysing the predominant colours that we encounter is through visual lifelogging devices such as the SenseCam. However an issue related to these devices is the privacy concerns of capturing image level detail. Therefore in this work we demonstrate a hardware prototype wearable camera that captures only one pixel - of the dominant colour prevelant in front of the user, thus circumnavigating the privacy concerns raised in relation to lifelogging. To simulate whether the capture of dominant colour would be sufficient we report on a simulation carried out on 1.2 million SenseCam images captured by a group of 20 individuals. We compare the dominant colours that different groups of people are exposed to and show that useful inferences can be made from this data. We believe our prototype may be valuable in future experiments to capture colour correlated associated with an individual's mood.Colour is everywhere in our daily lives and impacts things like our mood, yet we rarely take notice of it. One method of capturing and analysing the predominant colours that we encounter is through visual lifelogging devices such as the SenseCam. However an issue related to these devices is the privacy concerns of capturing image level detail. Therefore in this work we demonstrate a hardware prototype wearable camera that captures only one pixel - of the dominant colour prevelant in front of the user, thus circumnavigating the privacy concerns raised in relation to lifelogging. To simulate whether the capture of dominant colour would be sufficient we report on a simulation carried out on 1.2 million SenseCam images captured by a group of 20 individuals. We compare the dominant colours that different groups of people are exposed to and show that useful inferences can be made from this data. We believe our prototype may be valuable in future experiments to capture colour correlated associated with an individual's mood.
Resumo:
With the increasing availability of wearable cameras, research on first-person view videos (egocentric videos) has received much attention recently. While some effort has been devoted to collecting various egocentric video datasets, there has not been a focused effort in assembling one that could capture the diversity and complexity of activities related to life-logging, which is expected to be an important application for egocentric videos. In this work, we first conduct a comprehensive survey of existing egocentric video datasets. We observe that existing datasets do not emphasize activities relevant to the life-logging scenario. We build an egocentric video dataset dubbed LENA (Life-logging EgoceNtric Activities) (http://people.sutd.edu.sg/similar to 1000892/dataset) which includes egocentric videos of 13 fine-grained activity categories, recorded under diverse situations and environments using the Google Glass. Activities in LENA can also be grouped into 5 top-level categories to meet various needs and multiple demands for activities analysis research. We evaluate state-of-the-art activity recognition using LENA in detail and also analyze the performance of popular descriptors in egocentric activity recognition.
Resumo:
Technology is increasingly infiltrating all aspects of our lives and the rapid uptake of devices that live near, on or in our bodies are facilitating radical new ways of working, relating and socialising. This distribution of technology into the very fabric of our everyday life creates new possibilities, but also raises questions regarding our future relationship with data and the quantified self. By embedding technology into the fabric of our clothes and accessories, it becomes ‘wearable’. Such ‘wearables’ enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis. While the rapid uptake of wearables may offer unique and innovative opportunities, there are also concerns surrounding the high levels of data sharing that come as a consequence of these technologies. As more ‘smart’ devices connect to the Internet, and as technology becomes increasingly available (e.g. via Wi-Fi, Bluetooth), more products, artefacts and things are becoming interconnected. This digital connection of devices is called The ‘Internet of Things’ (IoT). IoT is spreading rapidly, with many traditionally non-online devices becoming increasingly connected; products such as mobile phones, fridges, pedometers, coffee machines, video cameras, cars and clothing. The IoT is growing at a rapid rate with estimates indicating that by 2020 there will be over 25 billion connected things globally. As the number of devices connected to the Internet increases, so too does the amount of data collected and type of information that is stored and potentially shared. The ability to collect massive amounts of data - known as ‘big data’ - can be used to better understand and predict behaviours across all areas of research from societal and economic to environmental and biological. With this kind of information at our disposal, we have a more powerful lens with which to perceive the world, and the resulting insights can be used to design more appropriate products, services and systems. It can however, also be used as a method of surveillance, suppression and coercion by governments or large organisations. This is becoming particularly apparent in advertising that targets audiences based on the individual preferences revealed by the data collected from social media and online devices such as GPS systems or pedometers. This type of technology also provides fertile ground for public debates around future fashion, identity and broader social issues such as culture, politics and the environment. The potential implications of these type of technological interactions via wearables, through and with the IoT, have never been more real or more accessible. But, as highlighted, this interconnectedness also brings with it complex technical, ethical and moral challenges. Data security and the protection of privacy and personal information will become ever more present in current and future ethical and moral debates of the 21st century. This type of technology is also a stepping-stone to a future that includes implantable technology, biotechnologies, interspecies communication and augmented humans (cyborgs). Technologies that live symbiotically and perpetually in our bodies, the built environment and the natural environment are no longer the stuff of science fiction; it is in fact a reality. So, where next?... The works exhibited in Wear Next_ provide a snapshot into the broad spectrum of wearables in design and in development internationally. This exhibition has been curated to serve as a platform for enhanced broader debate around future technology, our mediated future-selves and the evolution of human interactions. As you explore the exhibition, may we ask that you pause and think to yourself, what might we... Wear Next_? WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1
Resumo:
In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform.
Resumo:
Red light cameras (RLCs) have been used in a number of US cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, “spillover” effects caused by drivers reacting to non-RLC equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be selected randomly, and as a result may suffer from the regression to the mean bias. Finally, crash severity and resulting costs need to be considered in order to fully understand the safety impacts of RLCs. Recognizing these challenges, a study was conducted to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the cities of Phoenix and Scottsdale, Arizona. Twenty-four RLC equipped intersections in both cities are examined in detail and conclusions are drawn. Four different evaluation methodologies were employed to cope with the technical challenges described in this paper and to assess the sensitivity of results based on analytical assumptions. The evaluation results indicated that both Phoenix and Scottsdale are operating cost-effective installations of RLCs: however, the variability in RLC effectiveness within jurisdictions is larger in Phoenix. Consistent with findings in other regions, angle and left-turn crashes are reduced in general, while rear-end crashes tend to increase as a result of RLCs.
Resumo:
This paper proposes a generic decoupled imagebased control scheme for cameras obeying the unified projection model. The scheme is based on the spherical projection model. Invariants to rotational motion are computed from this projection and used to control the translational degrees of freedom. Importantly we form invariants which decrease the sensitivity of the interaction matrix to object depth variation. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6-DOF robotic platform.
Resumo:
Visual recording devices such as video cameras, CCTVs, or webcams have been broadly used to facilitate work progress or safety monitoring on construction sites. Without human intervention, however, both real-time reasoning about captured scenes and interpretation of recorded images are challenging tasks. This article presents an exploratory method for automated object identification using standard video cameras on construction sites. The proposed method supports real-time detection and classification of mobile heavy equipment and workers. The background subtraction algorithm extracts motion pixels from an image sequence, the pixels are then grouped into regions to represent moving objects, and finally the regions are identified as a certain object using classifiers. For evaluating the method, the formulated computer-aided process was implemented on actual construction sites, and promising results were obtained. This article is expected to contribute to future applications of automated monitoring systems of work zone safety or productivity.
Resumo:
Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.
Resumo:
‘Wearable technology’, or the use of specialist technology in garments, is promoted by the electronics industry as the next frontier of fashion. However the story of wearable technology’s relationship with fashion begins neither with the development of miniaturised computers in the 1970s nor with sophisticated ‘smart textiles’ of the twenty-first century, despite what much of the rhetoric suggests. This study examines wearable technology against a longer history of fashion, highlighted by the influential techno-sartorial experiments of a group of early twentieth century avant-gardes including Italian Futurists Giacomo Balla and F.T. Marinetti, Russian Constructivists Varvara Stepanova and Liubov Popova, and Paris-based Cubist, Sonia Delaunay. Through the interdisciplinary framework of fashion studies, the thesis provides a fuller picture of wearable technology framed by the idea of utopia. Using comparative analysis, and applying the theoretical formulations of Fredric Jameson, Louis Marin and Michael Carter, the thesis traces the appearance of three techno-utopian themes from their origins in the machine age experiments of Balla, Marinetti, Stepanova, Popova and Delaunay to their twenty-first century reappearance in a dozen wearable technology projects. By exploring the central thesis that contemporary wearable technology resurrects the techno-utopian ideas and expressions of the early twentieth century, the study concludes that the abiding utopian impetus to embed technology in the aesthetics (prints, silhouettes, and fabrication) and functionality of fashion is to unify subject, society and environment under a totalising technological order.
Resumo:
Red light cameras (RLC) have been used to reduce right-angle collisions at signalized intersections. However, the effect of RLCs on motorcycle crashes has not been well investigated. The objective of this study is to evaluate the effectiveness of RLCs on motorcycle safety in Singapore. This is done by comparing their exposure, proneness of at-fault right-angle crashes as well as the resulting right-angle collisions at RLC with those at non-RLC sites. Estimating the crash vulnerability from not-at-fault crash involvements, the study shows that with a RLC, the relative crash vulnerability or crash-involved exposure of motorcycles at right-angle crashes is reduced. Furthermore, field investigation of motorcycle maneuvers reveal that at non-RLC arms, motorcyclists usually queue beyond the stop-line, facilitating an earlier discharge and hence become more exposed to the conflicting stream. However at arms with a RLC, motorcyclists are more restrained to avoid activating the RLC and hence become less exposed to conflicting traffic during the initial period of the green. The study also shows that in right-angle collisions, the proneness of at-fault crashes of motorcycles is lowest among all vehicle types. Hence motorcycles are more likely to be victims than the responsible parties in right-angle crashes. RLCs have also been found to be very effective in reducing at-fault crash involvements of other vehicle types which may implicate exposed motorcycles in the conflicting stream. Taking all these into account, the presence of RLCs should significantly reduce the vulnerability of motorcycles at signalized intersections.
Resumo:
This paper presents an approach for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera’s optical center and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. Previous methods for auto-calibration of cameras based on pure rotations fail to work in these two degenerate cases. In addition, our approach includes a modified RANdom SAmple Consensus (RANSAC) algorithm, as well as improved integration of the radial distortion coefficient in the computation of inter-image homographies. We show that these modifications are able to increase the overall efficiency, reliability and accuracy of the homography computation and calibration procedure using both synthetic and real image sequences
Resumo:
Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.
Resumo:
This paper looks at the accuracy of using the built-in camera of smart phones and free software as an economical way to quantify and analyse light exposure by producing luminance maps from High Dynamic Range (HDR) images. HDR images were captured with an Apple iPhone 4S to capture a wide variation of luminance within an indoor and outdoor scene. The HDR images were then processed using Photosphere software (Ward, 2010.) to produce luminance maps, where individual pixel values were compared with calibrated luminance meter readings. This comparison has shown an average luminance error of ~8% between the HDR image pixel values and luminance meter readings, when the range of luminances in the image is limited to approximately 1,500cd/m2.