963 resultados para Wavelength division multiplexing (WDM)
Resumo:
En este proyecto se analizaron las características y el modo de operación de las fibras ópticas plásticas en un enlace óptico WDM (Wavelenght Division Multiplexing) operando en el espectro visible. Se estudiaron los componentes activos y pasivos necesarios para el enlace, como son las fuentes LED, multiplexores, filtros y acopladores. Se analizaron los efectos no lineales que se pueden presentar en la fibra óptica, y que son importantes de considerar al transmitir señales WDM. Para respaldar el análisis se simuló en MATLAB un enlace óptico en el dominio de la frecuencia utilizando fuentes LED que emiten en el espectro visible, junto con multiplexores WDM, filtros de absorción, acopladores y como medio de transmisión la Fibra Óptica Plástica (POF -Plastic Optical Fiber).
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
Resumo:
WDM (Wavelength-Division Multiplexing) optiset verkot on tällä hetkellä suosituin tapa isojen määrän tietojen siirtämiseen. Jokaiselle liittymälle määrätään reitin ja aallonpituus joka linkin varten. Tarvittavan reitin ja aallon pituuden löytäminen kutsutaan RWA-ongelmaksi. Tämän työn kuvaa mahdollisia kustannuksen mallein ratkaisuja RWA-ongelmaan. Olemassa on paljon erilaisia optimoinnin tavoitteita. Edellä mainittuja kustannuksen malleja perustuu näillä tavoitteilla. Kustannuksen malleja antavat tehokkaita ratkaisuja ja algoritmeja. The multicommodity malli on käsitelty tässä työssä perusteena RV/A-kustannuksen mallille. Myöskin OB käsitelty heuristisia menetelmiä RWA-ongelman ratkaisuun. Työn loppuosassa käsitellään toteutuksia muutamalle mallille ja erilaisia mahdollisuuksia kustannuksen mallein parantamiseen.
Resumo:
This paper shows, for the first time, the implementation of a WDM subsystem at the 2μm wavelength window with mixed formats. Three wavelength channels were directly modulated with BPSK Fast-OFDM at 5Gbit/s per channel, with a fourth channel NRZ-OOK externally modulated at 8.5Gbit/s giving a total capacity in excess of 20 Gbit/s. © 2012 OSA.
Resumo:
The bandwidth requirements of the Internet are increasing every day and there are newer and more bandwidth-thirsty applications emerging on the horizon. Wavelength division multiplexing (WDM) is the next step towards leveraging the capabilities of the optical fiber, especially for wide-area backbone networks. The ability to switch a signal at intermediate nodes in a WDM network based on their wavelengths is known as wavelength-routing. One of the greatest advantages of using wavelength-routing WDM is the ability to create a virtual topology different from the physical topology of the underlying network. This virtual topology can be reconfigured when necessary, to improve performance. We discuss the previous work done on virtual topology design and also discuss and propose different reconfiguration algorithms applicable under different scenarios.
Resumo:
Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.
Resumo:
A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems.
Resumo:
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency channels. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
As wavelength-division multiplexing (WDM) evolves towards practical applications in optical transport networks, waveband switching (WBS) has been introduced to cut down the operational costs and to reduce the complexities and sizes of network components, e.g., optical cross-connects (OXCs). This paper considers the routing, wavelength assignment and waveband assignment (RWWBA) problem in a WDM network supporting mixed waveband and wavelength switching. First, the techniques supporting waveband switching are studied, where a node architecture enabling mixed waveband and wavelength switching is proposed. Second, to solve the RWWBA problem with reduced switching costs and improved network throughput, the cost savings and call blocking probabilities along intermediate waveband-routes are analyzed. Our analysis reveals some important insights about the cost savings and call blocking probability in relation to the fiber capacity, the candidate path, and the traffic load. Third, based on our analysis, an online integrated intermediate WBS algorithm (IIWBS) is proposed. IIWBS determines the waveband switching route for a call along its candidate path according to the node connectivity, the link utilization, and the path length information. In addition, the IIWBS algorithm is adaptive to real network applications under dynamic traffic requests. Finally, our simulation results show that IIWBS outperforms a previous intermediate WBS algorithm and RWA algorithms in terms of network throughput and cost efficiency.
Resumo:
One of the important issues in establishing a fault tolerant connection in a wavelength division multiplexing optical network is computing a pair of disjoint working and protection paths and a free wavelength along the paths. While most of the earlier research focused only on computing disjoint paths, in this work we consider computing both disjoint paths and a free wavelength along the paths. The concept of dependent cost structure (DCS) of protection paths to enhance their resource sharing ability was proposed in our earlier work. In this work we extend the concept of DCS of protection paths to wavelength continuous networks. We formalize the problem of computing disjoint paths with DCS in wavelength continuous networks and prove that it is NP-complete. We present an iterative heuristic that uses a layered graph model to compute disjoint paths with DCS and identify a free wavelength.