985 resultados para Waveguide partially filled with dielectric


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach, the multipole theory (MT) method, is presented for the computation of cutoff wavenumbers of waveguides partially filled with dielectric. The MT formulation of the eigenvalue problem of an inhomogeneous waveguide is derived. Representative computational examples, including dielectric-rod-loaded rectangular and double-ridged waveguides, are given to validate the theory, and to demonstrate the degree of its efficiency

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of dielectric filling in a V groove on the propagation parameters of channel plasmon-polariton (CPP) modes. In particular, existence conditions and critical groove angles, mode localization, field structure, dispersion, and propagation distances of CPP modes are analyzed as functions of dielectric permittivity inside the groove. It is demonstrated that increasing dielectric permittivity in the groove results in a rapid increase of mode localization near the tip of the groove and increase of both the critical angles that determine a range of groove angles for which CPP modes can exist. Detailed analysis of the field structure has demonstrated that the maximum of the field in a CPP mode is typically reached at a small distance from the tip of the groove. The effect of rounded tip is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work examines analytically the forced convection in a channel partially filled with a porous material and subjected to constant wall heat flux. The Darcy–Brinkman–Forchheimer model is used to represent the fluid transport through the porous material. The local thermal non-equilibrium, two-equation model is further employed as the solid and fluid heat transport equations. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions, for the solid and fluid temperature fields, are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio and Darcy number as parameters. The results can be readily used to validate numerical simulations. They are, further, applicable to the analysis of enhanced heat transfer, using porous materials, in heat exchangers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady natural convection flow from a horizontal cylindrical annulus filled with a non-Darcy porous medium has been studied. The unsteadiness in the problem arises due to the impulsive change in the wall temperature of the outer cylinder. The Navier–Stokes equations along with the energy equation governing the unsteady natural convection flow have been solved by the finite-volume method. The effect of time variation on the heat transfer is more pronounced only in a small time interval immediately after the start of the impulsive motion and the steady state is reached after certain time. The results show that the annulus completely filled with a porous medium has the best insulating effectiveness. Convection in the horizontal annulus is confined mostly at top and bottom regions. Hence, only these regions should be insulated. In case of annulus partially filled with a porous material, insulating the region near the outer cylinder is more effective than insulating the region near the inner cylinder. The effect of Darcy number on the heat transfer is more pronounced than that of the Grashof number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the fluid motion-vehicle dynamics interaction, a model of four, liquid filled two-axle container freight wagons was set up. The railway vehicle has been modelled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. SIMPACK has been used for MBS analysis, and ANSYS for liquid sloshing modelling and equivalent mechanical systems validation. Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of the unused coupling screw from its hanger. The coupling screw's release was especially obtained when a period of acceleration was followed by an abrupt braking manoeuvre at 1 m/s2. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Possible solutions to avoid the phenomenon are given.Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. This paper reports on a study of the fluid motion-train vehicle dynamics interaction. In the study, a model of four, liquid-filled two-axle container freight wagons was developed. The railway vehicle has been modeled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. A simulation program was used for MBS analysis, and a finite element analysis program was used for liquid sloshing modeling and equivalent mechanical systems validation. Acceleration and braking maneuvers of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of an unused coupling screw from its hanger. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Solutions are suggested to avoid the resonance problem, and directions for future research are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sloshing describes the movement of liquids inside partially filled tanks, generating dynamic loads on the tank structure. The resulting impact pressures are of great importance in assessing structural strength, and their correct evaluation still represents a challenge for the designer due to the high level of nonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of air trapping. In the present paper, a set of two-dimensional cases, for which experimental results are available, is considered to assess the merits and shortcomings of different numerical methods for sloshing evaluation, namely two commercial RANS solvers (FLOW-3D and LS-DYNA), and two academic software (Smoothed Particle Hydrodynamics and RANS). Impact pressures at various critical locations and global moment induced by water motion in a partially filled rectangular tank, subject to a simple harmonic rolling motion, are evaluated and predictions are compared with experimental measurements. 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulations of thermomagnetic convection of paramagnetic fluids placed in a micro-gravity condition (g ≈ 0) and under a uniform vertical gradient magnetic field in an open ended square enclosure with ramp heating temperature condition applied on a vertical wall is investigated in this study. In presence of the strong magnetic gradient field thermal convection of the paramagnetic fluid might take place even in a zero-gravity environment as a direct consequence of temperature differences occurring within the fluid. The thermal boundary layer develops adjacent to the hot wall as soon as the ramp temperature condition is applied on it. There are two scenarios can be observed based on the ramp heating time. The steady state of the thermal boundary layer can be reached before the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time then the thermal boundary layer is in a quasi-steady mode with convection balancing conduction after the quasi-steady time. Further increase of the heat input simply accelerates the flow to maintain the proper thermal balance. Finally, the boundary layer becomes completely steady state when the ramp time is finished. Effects of magnetic Rayleigh number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat transfer are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulations of thermomagnetic convection of paramagnetic fluids placed in a micro-gravity condition (g nearly 0) and under a uniform vertical gradient magnetic field in an open ended square enclosure with ramp heating temperature condition applied on a vertical wall is investigated in this study. In presence of the strong magnetic gradient field thermal convection of the paramagnetic fluid might take place even in a zero-gravity environment as a direct consequence of temperature differences occurring within the fluid. The thermal boundary layer develops adjacent to the hot wall as soon as the ramp temperature condition is applied on it. There are two scenario that can be observed based on the ramp heating time. The steady state of the thermal boundary layer can be reached before the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time then the thermal boundary layer is in a quasi-steady mode with convection balancing conduction after the quasi-steady time. Further increase of the heat input simply accelerates the flow to maintain the proper thermal balance. Finally, the boundary layer becomes completely steady state when the ramp time is finished. Effects of magnetic Rayleigh number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat transfer are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.