991 resultados para Wave-front coding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of wave-front analysis method for the collimation testing of laser beams is proposed. A concept of wave-front height is defined, and, on this basis, the wave-front analysis method of circular aperture sampling is introduced. The wave-front height of the tested noncollimated wave can be estimated from the distance between two identical fiducial diffraction planes of the sampled wave, and then the divergence is determined. The design is detailed, and the experiment is demonstrated. The principle and experiment results of the method are presented. Owing to the simplicity of the method and its low cost, it is a promising method for checking the collimation of a laser beam with a large divergence. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel highly sensitive wave front detection method for a quick check of a flat wave front by taking advantage of a non-zero-order pi phase plate that yields a non-zero-order diffraction pattern. When a light beam with a flat wave front illuminates a phase plate, the zero-order intensity is zero. When there is a slight distortion of the wave front, the zero-order intensity increases. The ratio of first-order intensity to that of zero-order intensity is used as the criterion with which to judge whether the wave front under test is flat, eliminating the influence of background light. Experimental results demonstrate that this method is efficient, robust, and cost-effective and should be highly interesting for a quick check of a flat wave front of a large-aperture laser beam and adaptive optical systems. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

从空域和频域两个方面利用新的数学工具对扩大景深的波前编码成像系统的一些重要特性进行了阐释和分析。空域中,主要利用维格纳分布函数的正则投影来分析系统的点扩展函数对离焦像差的变化不敏感特性;频域中,则利用考纽螺线的图解方法来分析系统的光学传递函数对离焦像差的变化不敏感特性。简单讨论了波前编码成像技术所涉及的数字图像处理方法,并且用数值仿真实验验证了波前编码成像系统的这些优越特性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave-front coding is a well known technique used to extend the depth of field of incoherent imaging system. The core of this technique lies in the design of suitable phase masks, among which the most important one is the cubic phase mask suggested by Dowski and Cathey (1995) [1]. In this paper, we propose a new type called cubic sinusoidal phase mask which is generated by combing the cubic one and another component having the sinusoidal form. Numerical evaluations and real experimental results demonstrate that the composite phase mask is superior to the original cubic phase mask with parameters optimized and provides another choice to achieve the goal of depth extension. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of coherent short-wavelength radiation across a plasma column is dramatically improved under traveling-wave excitation (TWE). The latter is optimized when its propagation is close to the speed of light, which implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles in order to increase the optical penetration of the pump into the plasma core. Pulse-front back-tilt is considered to overcome such trade-off. In fact, the TWE speed depends on the pulse-front slope (envelope of amplitude), whereas the optical penetration depth depends on the wave-front slope (envelope of phase). Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a high-magnification front-end imaging/focusing component. It is concluded that speed matching should be accomplished with minimal compressor misalignment and maximal imaging magnification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electromechanical wave propagation characterizes the first-swing dynamic response in a spatially delayed manner. This paper investigates the characteristics of this phenomenon in two-dimensional and one-dimensional power systems. In 2-D systems, the wave front expands as a ripple in a pond. In 1-D systems, the wave front is more concentrated, retains most of its magnitude, and travels like a pulse on a string. This large wave front is more impactful upon any weak link and easily causes transient instability in 1-D systems. The initial disturbance injects both high and low frequency components, but the lumped nature of realistic systems only permits the lower frequency components to propagate through. The kinetic energy split at a junction is equal to the generator inertia ratio in each branch in an idealized continuum system. This prediction is approximately valid in a realistic power system. These insights can enhance understanding and control of the traveling waves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H (2)/O (2) diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave guiding chains to control the acoustic wave transmission. The rapid wave front amplitude decay exhibited by these granular networks makes them highly attractive for impact mitigation applications. The agreement between experiments, numerical simulations, and applicable theoretical predictions validates the wave guiding capabilities of these engineered granular crystals and networks and opens a wide range of possibilities for the realization of increasingly complex granular material design.