997 resultados para Wave variability plethysmography
Resumo:
Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.
Resumo:
Introducción: Se ha conocido la necesidad de la monitoria del estado hemodinámico de los pacientes quirúrgicos de forma dinámica, que permita realizar una valoración rápida, menos invasiva y confiable para un diagnóstico acertado y evaluar la respuesta a las conductas tomadas. El delta de pletismografía es una herramienta confiable, no invasiva y dinámica que logra cumplir con las características antes mencionadas y que además puede llegar a tener un papel preponderante en la terapia hídrica dirigida. Metodología: Estudio de correlación, se realizaron evaluaciones sistemáticas de la onda de pletismografía y las variables del paciente desde la inducción anestésica hasta el inicio del procedimiento quirúrgico, se determinó la correlación entre la variabilidad de la onda de pletismografía, el delta de pletismografía y el requerimiento de líquidos intraoperatorios. Se incluyeron pacientes adultos en el rango de 18 a 80 años, que cumplían los criterios de inclusión, programados para cirugía bajo anestesia general en la Fundación Cardioinfantil Instituto de Cardiología, hasta lograr la muestra calculada de 31 pacientes. Siguiendo los principios éticos de la declaración de Helsinki y la normatividad colombiana, este estudio no consideró la realización de ningún tipo de intervención en los pacientes lo que lo cataloga de bajo riesgo. Resultados: El 80.6% presentó variabilidad aumentada, con correlación entre la variabilidad de la onda del pulso, el delta POP y la cantidad de líquidos intraoperatorios (0.245 IC 95%). Disminución del delta POP en T3, sugiriendo respuesta a líquidos, correlación entre uso de vasopresores, analgesia y náuseas y vómito postoperatorio. Conclusión: Existe correlación entre la variabilidad de la onda de pletismografía, el delta de pletismografía y la reposición de líquidos endovenosos en los pacientes ventilados mecánicamente durante anestesia general. Además se encuentra asociación entre uso de vasopresores, analgesia y náuseas y vómito postoperatorio.
Resumo:
Introducción: Determinar el balance de líquidos en pacientes quirúrgicos es un factor de suma importancia, la variabilidad de la onda de pletismografía puede ser un soporte para ayudar a superar este objetivo. La interpretación subjetiva por parte del anestesiólogo de la variabilidad de la onda de pletismografía, puede inferirse como una herramienta confiable para predecir y guiar la administración de líquidos en pacientes que no requieran monitoria invasiva. Metodología: Estudio exploratorio desarrollado por método de observación con la colaboración de 90 médicos anestesiólogos, mediante observación de la variabilidad de la onda de pletismografía en 5 videos aleatorizados. El porcentaje de decisiones correctas se analizó mediante IC del 95% para proporciones. Para evaluar la homogeneidad en la fracción de respuestas correctas se realizan pruebas chi-cuadrado de homogeneidad con un nivel de significancia de 0.05. Resultados: El 75% de la población encuestada con (IC) 95% de la proporción acertó en la estimación del IVP. La conducta de administrar o no líquidos y/o vasopresores fue correcta en el 80% de la población para 4 videos, con una tasa de error de 8,2% por video. El video 4 obtuvo un 32% de acierto y una tasa de error de 10,6%. Conclusiones: El estudio permitió de manera subjetiva, determinar que el uso de la variabilidad de la onda de pletismografía es una herramienta de fácil lectura que ayuda a la administración de líquidos durante el intraoperatorio en el paciente sometido a ventilación mecánica en procedimientos quirúrgicos de baja a intermedia complejidad.
Resumo:
The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.
Resumo:
BACKGROUND: Hypnotic depth but not haemodynamic response to painful stimulation can be measured with various EEG-based anaesthesia monitors. We evaluated the variation of pulse plethysmography amplitude induced by an electrical tetanic stimulus (PPG variation) as a potential measure for analgesia and predictor of haemodynamic responsiveness during general anaesthesia. METHODS: Ninety-five patients, ASA I or II, were randomly assigned to five groups [Group 1: bispectral index (BIS) (range) 40-50, effect site remifentanil concentration 1 ng ml(-1);Group 2: BIS 40-50, remifentanil 2 ng ml(-1); Group 3: BIS 40-50, remifentanil 4 ng ml(-1); Group 4: BIS 25-35, remifentanil 2 ng ml(-1); Group 5: BIS 55-65, remifentanil 2 ng ml(-1)]. A 60 mA tetanic stimulus was applied for 5 s on the ulnar nerve. From the digitized pulse oximeter wave recorded on a laptop computer, linear and non-linear parameters of PPG variation during the 60 s period after stimulation were computed. The haemodynamic response to subsequent orotracheal intubation was recorded. The PPG variation was compared between groups and between responders and non-responders to intubation (anova). Variables independently predicting the response were determined by logistic regression. RESULTS: The probability of a response to tracheal intubation was 0.77, 0.47, 0.05, 0.18 and 0.52 in Groups 1-5, respectively (P<0.03). The PPG variability was significantly higher in responders than in non-responders but it did not improve the prediction of the response to tracheal intubation based on BIS level and effect site remifentanil concentration. CONCLUSION: Tetanic stimulation induced PPG variation does not reflect the analgesic state in a wide clinical range of surgical anaesthesia.
Resumo:
OBJECTIVES: To investigate the effect of a change in second-hand smoke (SHS) exposure on heart rate variability (HRV) and pulse wave velocity (PWV), this study utilized a quasi-experimental setting when a smoking ban was introduced. METHODS: HRV, a quantitative marker of autonomic activity of the nervous system, and PWV, a marker of arterial stiffness, were measured in 55 non-smoking hospitality workers before and 3-12 months after a smoking ban and compared to a control group that did not experience an exposure change. SHS exposure was determined with a nicotine-specific badge and expressed as inhaled cigarette equivalents per day (CE/d). RESULTS: PWV and HRV parameters significantly changed in a dose-dependent manner in the intervention group as compared to the control group. A one CE/d decrease was associated with a 2.3 % (95 % CI 0.2-4.4; p = 0.031) higher root mean square of successive differences (RMSSD), a 5.7 % (95 % CI 0.9-10.2; p = 0.02) higher high-frequency component and a 0.72 % (95 % CI 0.40-1.05; p < 0.001) lower PWV. CONCLUSIONS: PWV and HRV significantly improved after introducing smoke-free workplaces indicating a decreased cardiovascular risk.
Resumo:
This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20–30 km, reduced from 30–40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15–35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks.
Resumo:
This study investigates the relationship between the wind wave climate and the main climate modes of atmospheric variability in the North Atlantic Ocean. The modes considered are the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the East Atlantic Western Russian (EA/WR) pattern and the Scandinavian (SCAN) pattern. The wave dataset consists of buoys records, remote sensing altimetry observations and a numerical hindcast providing significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) for the period 1989–2009. After evaluating the reliability of the hindcast, we focus on the impact of each mode on seasonal wave parameters and on the relative importance of wind-sea and swell components. Results demonstrate that the NAO and EA patterns are the most relevant, whereas EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave climate variability. During their positive phases, both NAO and EA patterns are related to winter SWH at a rate that reaches 1 m per unit index along the Scottish coast (NAO) and Iberian coast (EA) patterns. In terms of winter MWD, the two modes induce a counterclockwise shift of up to 65° per negative NAO (positive EA) unit over west European coasts. They also increase the winter MWP in the North Sea and in the Bay of Biscay (up to 1 s per unit NAO) and along the western coasts of Europe and North Africa (1 s per unit EA). The impact of winter EA pattern on all wave parameters is mostly caused through the swell wave component.
Resumo:
A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance as well as with altimetry data. For the projections, it has been found that statistical models that use wind speed as independent variable predictor are able to capture a larger fraction of the winter SWH inter-annual variability (68% on average) and of the long term changes projected by the dynamical simulation. Conversely, regression models using climate indices, sea level pressure and/or pressure gradient as predictors, account for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically projected long term trends over the North Atlantic. Investigating the wind-sea and swell components separately, we have found that the combination of two regression models, one for wind-sea waves and another one for the swell component, can improve significantly the wave field projections obtained from single regression models over the North Atlantic.
Resumo:
[EN]Spatial variability of wave energy resource around the coastal waters of the Canary Archipelago is assessed by using a long-term data set derived by means of hindcasting techniques. Results revea( the existence of large differences in the energetic content available in different zones of the archipelago, mainly during spring and autumn. Areas with a higher wave power leve( are the north edge of Lanzarote, western side of Lanzarote and Fuerteventura, north and northwest in La Palma and El Hierro, as well as the north coast of Tenerife. The available energy potential slightly decreases in the north side of Gran Canaria and La Gomera.
Resumo:
Epilithic biofilm on rocky shores is regulated by physico-chemical and biological factors and is important as a source of food for benthic organisms. The influences of environmental and grazing pressure on spatial variability of biomass of biofilm were evaluated on shores on the north coast of Sao Paulo State (SE Brazil). A general trend of greater abundance of microalgae was observed lower on the shore, but neither of the environmental factors evaluated (wave exposure and shore level) showed consistent effects, and differences were found among specific shores or times (September 2007 and March 2008). The abundance of slow-moving grazers (limpets and littorinids) showed a negative correlation with chlorophyll a concentration on shores. However, experimental exclusion of these grazers failed to show consistent results at small spatial scales. Observations of divergent abundances of the isopod Ligia exotica and biomass of biofilm on isolated boulders on shores led to a short exclusion experiment, where the grazing pressure by L. exotica significantly decreased microalgal biomass. The result suggests that grazing activities of this fast-moving consumer probably mask the influence of slow-moving grazers at small spatial scales, while both have an additive effect at larger scales that masks environmental influences. This is the first evaluation of the impact of the fast-moving herbivore L. exotica on microalgal biomass on rocky shores and opens an interesting discussion about the role of these organisms in subtropical coastal environments.
Resumo:
BACKGROUND AND PURPOSE: Several morphometric MR imaging studies have investigated age- and sex-related cerebral volume changes in healthy human brains, most often by using samples spanning several decades of life and linear correlation methods. This study aimed to map the normal pattern of regional age-related volumetric reductions specifically in the elderly population. MATERIALS AND METHODS: One hundred thirty-two eligible individuals (67-75 years of age) were selected from a community-based sample recruited for the Sao Paulo Ageing and Health (SPAH) study, and a cross-sectional MR imaging investigation was performed concurrently with the second SPAH wave. We used voxel-based morphometry (VBM) to conduct a voxelwise search for significant linear correlations between gray matter (GM) volumes and age. In addition, region-of-interest masks were used to investigate whether the relationship between regional GM (rGM) volumes and age would be best predicted by a nonlinear model. RESULTS: VBM and region-of-interest analyses revealed selective foci of accelerated rGM loss exclusively in men, involving the temporal neocortex, prefrontal cortex, and medial temporal region. The only structure in which GM volumetric changes were best predicted by a nonlinear model was the left parahippocampal gyrus. CONCLUSIONS: The variable patterns of age-related GM loss across separate neocortical and temporolimbic regions highlight the complexity of degenerative processes that affect the healthy human brain across the life span. The detection of age-related Ill GM decrease in men supports the view that atrophy in such regions should be seen as compatible with normal aging.