997 resultados para Wave Loading


Relevância:

100.00% 100.00%

Publicador:

Resumo:

提出亚微秒单脉冲应力波载荷作用下II型裂纹的平板冲击实验技术。加载率为dK/dt-10~8MPa·m~{”/d}·s~{-1}。实验中由锰铜应力片和弹性波理论分别测定和计算了压应力;通过微观分析确定了动态裂纹的平均扩展长度;引进等效应力强度因子,用动态断裂理论确定了60号钢的动态断裂韧性K_{Id}和K_{IId};建立了亚微秒冲击载荷作用下确定材料动态断裂韧性的方法。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

波浪作用下海床的稳定性与液化分析是海底管线、防波堤和海洋平台设计中必须仔细考虑的问题。推荐了一个循环荷载作用下土体的弹塑性实用本构模型,并给出了一种粉土的模型参数。该模型直接根据初始应力状态和循环应力的大小与作用时间计算土体的塑性应变增量,在有限元计算中不需要引入弹塑性矩阵。采用Biot理论和有限单元法,计算了粉土海床在波浪作用下的孔隙水压力和有效应力的变化过程,并对海床的稳定性和液化进行了分析。计算结果与波浪槽实验反映的规律是相符的。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian tsunami of 26 December 2004 killed over 220 000 people and devastated coastal structures, including many thousands of traditional brick-built homes. This paper presents the results of model tests that compare the impact of a tsunami wave on a typical coastal house with that on a new tsunami resistant design developed in the USA and now built in Sri Lanka Digital images recorded during the test reveal how the tsunami wave passed through the new house design without damaging it but severely damaged the typical coastal house. Pressure sensor results also provided further insight into tsunami wave loading, indicating that the established Japanese method significantly underestimates maximum impact load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"January 1981."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10(2)/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (+/- 4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within +/- 1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot’s poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a series of experiments have been conducted in a U-shaped oscillatory flow tunnel, which provides a more realistic simulation than the previous actuator loading methods. Based on the experimental data of pipe displacement with two different constraint conditions (freely laid pipelines and anti-rolling pipelines), three characteristic times in the process of pipeline losing stability are identified. The effects of sand size on the pipeline lateral stability are examined for freely laid pipelines. The empirical relationships between non-dimensional pipeline weight (G) and Fronde number (Fr-b) are established for different constraint conditions, which will provide a guide for engineering practice. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Offshore pipelines are always trenched into seabed to reduce wave-induced forces and thereby to enhance their stability. The trenches are generally backfilled either by in-site sediments or by depositing selected backfill materials over the pipeline from bottom-dump barge. The actual waves in shallow water zone are always characterized as nonlinear. The proper evaluation of the wave-induced pressures upon pipeline is important for coastal geotechnical engineers. However, most previous investigations of the wave–seabed–pipe interaction problem have been concerned only with a single sediment layer and linear wave loading. In this paper, based on Biot’s consolidation theory, a two-dimensional finite element model is developed to investigate non-linear wave induced pore pressures around trenched pipeline. The influences of the permeability of backfill soil and the geometry profiles of trenches upon soil responses around pipeline are studied respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the problem of estimating wave pressure loads acting on Oscillating Wave Surge Converters (OWSC) for assessment of fatigue on their components. Recent wave loading data issued from experimental testing of a 25th scale model of a box-shaped OWSC are here used to review the accuracy of the predictions made by an engineering method previously developed to derive wave pressure loads on OWSCs from experimental data. Predictions are shown underestimate wave pressure loads, and other methods subsequently developed are presented. A simplistic experimental method taking in consideration variations of the wetted surface area of the flap is shown to lead to relatively good estimates of wave pressure loads that could be used for fatigue calculations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The accurate definition of the extreme wave loads which act on offshore structures represents a significant challenge for design engineers and even with decades of empirical data to base designs upon there are still failures attributed to wave loading. The environmental conditions which cause these loads are infrequent and highly non-linear which means that they are not well understood or simple to describe. If the structure is large enough to affect the incident wave significantly further non-linear effects can influence the loading. Moreover if the structure is floating and excited by the wave field then its responses, which are also likely to be highly non-linear, must be included in the analysis. This makes the description of the loading on such a structure difficult to determine and the design codes will often suggest employing various tools including small scale experiments, numerical and analytical methods, as well as empirical data if available.
Wave Energy Converters (WECs) are a new class of offshore structure which pose new design challenges, lacking the design codes and empirical data found in other industries. These machines are located in highly exposed and energetic sites, designed to be excited by the waves and will be expected to withstand extreme conditions over their 25 year design life. One such WEC is being developed by Aquamarine Power Ltd and is called Oyster. Oyster is a buoyant flap which is hinged close to the seabed, in water depths of 10 to 15m, piercing the water surface. The flap is driven back and forth by the action of the waves and this mechanical energy is then converted to electricity.
It has been identified in previous experiments that Oyster is not only subject to wave impacts but it occasionally slams into the water surface with high angular velocity. This slamming effect has been identified as an extreme load case and work is ongoing to describe it in terms of the pressure exerted on the outer skin and the transfer of this short duration impulsive load through various parts of the structure.
This paper describes a series of 40th scale experiments undertaken to investigate the pressure on the face of the flap during the slamming event. A vertical array of pressure sensors are used to measure the pressure exerted on the flap. Characteristics of the slam pressure such as the rise time, magnitude, spatial distribution and temporal evolution are revealed. Similarities are drawn between this slamming phenomenon and the classical water entry problems, such as ship hull slamming. With this similitude identified, common analytical tools are used to predict the slam pressure which is compared to that measured in the experiment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A major difficulty in the design of full scale Wave Energy Converters is the need to design for two conflicting design criteria. In one instance devices must be designed to couple heavily to the incident wave force resulting in the efficient extraction of energy in small sea states, however devices must also be capable of withstanding the harsh conditions encountered during extreme seas. This paper presents an initial investigation of the extreme wave loading of a generic, surface-piercing, pitching flap-type device deployed in near shore wave conditions. Slamming of the flap is selected as the extreme load event for further investigation and the experimental methodologies employed are described. Preliminary results showing both local and global loading under such events are presented for the case of a flap tested in a 3-dimensional environment. Results are presented which show flap slamming effects on the pressures experienced on the front face of the flap.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.