922 resultados para Water-energy nexus
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper explores the water-energy nexus of Spain and offers calculations for both the energy used in the water sector and the water required to run the energy sector. The article takes a prospective approach, offering evaluations of policy objectives for biofuels and expected renewable energy sources. Approximately 5.8% of total electricity demand in Spain is due to the water sector. Irrigated agriculture is one of the Spanish water sectors that show the largest growth in energy requirements. Searches for more efficient modes of farm water use, urban waste water treatment, and the use of desalinated water must henceforth include the energy component. Furthermore, biofuel production, to the levels targeted for 2020, would have an unbearable impact on the already stressed water resources in Spain. However, growing usage of renewable energy sources is not threatened by water scarcity, but legislative measures in water allocation and water markets will be required to meet the requirements of using these sources. Some of these measures, which are pushed by regional governments, are discussed in concluding sections.
Resumo:
The agricultural sector is undoubtedly one of the sectors that has the greatest impact on the use of water and energy to produce food. The circular economy allows to reduce waste, obtaining maximum value from products and materials, through the extraction of all possible by-products from resources. Circular economy principles for agriculture include recycling, processing, and reusing agricultural waste in order to produce bioenergy, nutrients, and biofertilizers. Since agro-industrial wastes are principally composed of lignin, cellulose, and hemicellulose they can represent a suitable substrate for mushroom growth and cultivation. Mushrooms are also considered healthy foods with several medicinal properties. The thesis is structured in seven chapters. In the first chapter an introduction on the water, energy, food nexus, on agro-industrial wastes and on how they can be used for mushroom cultivation is given. Chapter 2 details the aims of this dissertation thesis. In chapters three and four, corn digestate and hazelnut shells were successfully used for mushroom cultivation and their lignocellulosic degradation capacity were assessed by using ATR-FTIR spectroscopy. In chapter five, through the use of the Surface-enhanced Raman Scattering (SERS) spectroscopy was possible to set-up a new method for studying mushroom composition and for identifying different mushroom species based on their spectrum. In chapter six, the isolation of different strains of fungi from plastic residues collected in the fields and the ability of these strains to growth and colonizing the Low-density Polyethylene (LDPE) were explored. The structural modifications of the LDPE, by the most efficient fungal strain, Cladosporium cladosporioides Clc/1 strain were monitored by using the Scanning Electron Microscope (SEM) and ATR-FTIR spectroscopy. Finally, chapter seven outlines the conclusions and some hints for future works and applications are provided.
Resumo:
Non-invasive methods, including stable isotope techniques, indirect calorimetry, nutritional balance and skinfold thickness, have given a new insight into early postnatal growth in neonates. Neonates and premature infants in particular, create an unusual opportunity to study the fluid and metabolic adaptation to extrauterine life because their physical environment can be controlled, fluid and energy balance can be measured and the link between metabolism and the energetics of their postnatal growth can be assessed accurately. Thus the postnatal time course of total body water, heat production, energy cost of growth and composition of weight gain have been quantified in a series of "healthy" low-birth-weight premature infants. These results show that total body water is remarkably stable between postnatal days 3-21. Energy expenditure and heat production rates increase postnatally from mean values of 40 kcal/kg/day during the first week to 60 kcal/kg/day in the third week. An apparent energy balance deficit of 180 kcal/kg can be ascribed to premature delivery. The cost of protein metabolism is the highest energy demanding process related to growth. The fact that nitrogen balance becomes positive within 72 h after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism during early postnatal growth: skinfold thickness, dry body mass and fat decrease, while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches statural growth. The goals of the following review are to summarize data on total body water and energy metabolism in premature infants and to discuss how they correlate with physiological aspects of early postnatal growth.
Resumo:
The global economy is based on a take-make-consume and dispose model where natural resources are turned into products and the waste disposed of instead of being reused as a resource. In the Asia-Pacific region climate change along with rapid population and economic growth is resulting in increased demand for water and food, potentially leading to economic and political instability. Europe has developed policy and technological innovations that can facilitate the transition towards a circular economy where waste becomes a resource. By using existing instruments Europe can transfer its circular economy knowledge and technology to the Asia-Pacific region to increase security of supply of scarce resources. This can help ensure global security, influence climate change negotiations and create jobs in Europe.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.
Resumo:
With the global population projected to reach 9 billion in 2050, demand for food is expected to increase by over 50% in 2030 and 70% in 2050 (UN-Water, 2013). Already agriculture is the largest user of water with irrigation accounting for nearly 70% of all freshwater withdrawals (UN-Water, 2016).
Resumo:
In this paper, we propose climate adaptation solutions for the green sectors in three different zones of MENA: Egypt’s Delta (irrigated), Karak, in the highlands of Jordan (rainfed), and Lebanon’s Orontes basin (mixed: rainfed-irrigated). We analysed land use and crop intensification, and calculated the economic productivity of water – a critical scarce resource in MENA. By integrating the results with evidence from literature on the potential impacts of climate change and socio-economic factors, we could identify vulnerability levels of the three regions and propose adaptation measures relying of the concept of the “food-water-energy nexus.” While the vulnerability levels are found to be high in the Delta (Egypt) and Karak (Jordan), mainly due to water scarcity and poor adaptive capacity, the vulnerability level is moderate in the Orontes zone (Lebanon) due to a diversified agricultural sector and good market development, coupled with moderate water scarcity. Proposed adaptation solutions range from measures to improve technical efficiency, to measures that encourage economically efficient allocation by use of market forces. For both cases, the development of market opportunities is emphasized to make the proposed measures attractive to farmers.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
Nowadays there are several ways of supplying hot water for showers in residential buildings. One of them is the use of electric storage water heaters (boilers). This equipment raises the water temperature in a reservoir (tank) using the heat generated by an electric resistance. The behavior of this equipment in Brazil is still a research object and there is not a standard in the country to regulate its efficiency. In this context, an experimental program was conducted aiming to collect power consumption data to evaluate its performance. The boilers underwent an operation cycle to simulate a usage condition aiming to collect parameters for calculating the efficiency. This 1-day cycle was composed of the following phases: hot water withdrawal, reheating and standby heat loss. The methods allowed the identification of different parameters concerning the boilers work, such as: standby heat loss in 24 h, hot water withdrawal rate, reheating time and energy efficiency. The average energy efficiency obtained was of 75%. The lowest efficiency was of 62% for boiler 2 and the highest was of 85% for boiler 9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background/Objectives: We applied three dietary assessment methods and aimed at obtaining a set of physical, social and psychological variables that can discriminate those individuals who did not underreport (`never under-reporters`), those who underreported in one dietary assessment method (`occasional under-reporters`) and those who underreported in two or three dietary assessment methods (`frequent under-reporters`). Participants/Methods: Sixty-five women aged 18-57 years were recruited for this study. Total energy expenditure was determined by doubly labelled water, and energy intake was estimated by three 24-h diet recalls, 3-day food records and a food frequency questionnaire. A multiple discriminant analysis was used to identify which of those variables better discriminated the three groups: body mass index (BMI), income, education, social desirability, nutritional knowledge, dietary restraint, physical activity practice, body dissatisfaction and binge-eating symptoms. Results: Twenty-three participants were `never under-reporters`. Twenty-four participants were `occasional under-reporters` and 18 were `frequent under-reporters`. Four variables entered the discriminant model: income, BMI, social desirability and body dissatisfaction. According to potency indices, income contributed the most to the total discriminant power, followed in decreasing order by social desirability score, BMI and body dissatisfaction. Income, social desirability and BMI were the characteristics that mainly separated the `never under-reporters` from the under-reporters (occasional or frequent). Body dissatisfaction better discriminated the `occasional under-reporters` from the `frequent under-reporters`. Conclusions: `Frequent under-reporters` have a greater BMI, social desirability score, body dissatisfaction score and lower income. These four variables seemed to be able to discriminate individuals who are more prone to systematic under reporting. European Journal of Clinical Nutrition (2009) 63, 1192-1199; doi:10.1038/ejcn.2009.54; published online 15 July 2009