895 resultados para Water treatment plant residues
Resumo:
The complex ecology of free-living amoebae (FLA) and their role in spreading pathogenic microorganisms through water systems have recently raised considerable interest. In this study, we investigated the presence of FLA and amoebae-resisting bacteria (ARB) at various stages of a drinking water plant fed with river water. We isolated various amoebal species from the river and from several points within the plant, mostly at early steps of water treatment. Echinamoeba- and Hartmannella-related amoebae were mainly recovered in the drinking water plant whereas Acanthamoeba- and Naegleria-related amoebae were recovered from the river water and the sand filtration units. Some FLA isolates were recovered immediately after the ozonation step, thus suggesting resistance of these microorganisms to this disinfection procedure. A bacterial isolate related to Mycobacterium mucogenicum was recovered from an Echinamoeba-related amoeba isolated from ozone-treated water. Various other ARB were recovered using co-culture with axenic Acanthamoeba castellanii, including mycobacteria, legionella, Chlamydia-like organisms and various proteobacteria. Noteworthy, a new Parachlamydia acanthamoebae strain was recovered from river water and from granular activated carbon (GAC) biofilm. As amoebae mainly multiply in sand and GAC filters, optimization of filter backwash procedures probably offers a possibility to better control these protists and the risk associated with their intracellular hosts
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A aplicação do lodo de estação de tratamento de água (LETA) em solos degradados é uma alternativa tanto para disposição desse resíduo como para a recuperação do solo. Neste trabalho avaliaram-se os efeitos do LETA nos teores de metais pesados em um Latossolo degradado por mineração de cassiterita na Floresta Nacional do Jamari, RO, Brasil. Utilizou-se delineamento experimental inteiramente casualizado com cinco tratamentos: testemunha (n = 4); testemunha química, que recebeu apenas calagem (n = 4) e doses D100, D150 e D200 (respectivamente 100, 150 e 200 mg de N kg-1 solo na forma de LETA), aplicadas antes da calagem (n = 20). Após 30 dias da calagem, período em que o solo contido nos vasos foi mantido com teor de umidade próximo à capacidade de retenção, coletaram-se amostras de solo, que foram analisadas com relação aos teores totais e extraíveis de Fe, Cu, Mn, Zn, Cd, Pb, Ni e Cr. A aplicação de LETA aumentou os teores dos metais pesados do solo. A aplicação deste tipo de lodo em áreas degradadas pode causar impacto ambiental e, portanto, deve ser monitorada.
Resumo:
The importance of clean drinking water in any community is absolutely vital if we as the consumers are to sustain a life of health and wellbeing. Suspended particles in surface waters not only provide the means to transport micro-organisms which can cause serious infections and diseases, they can also affect the performance capacity of a water treatment plant. In such situations pre-treatment ahead of the main plant is recommended. Previous research carried out using non-woven synthetic as a pre-filter materials for protecting slow sand filters from high turbidity showed that filter run times can be extended by several times and filters can be regenerated by simply removing and washing of the fabric ( Mbwette and Graham, 1987 and Mbwette, 1991). Geosynthetic materials have been extensively used for soil retention and dewatering in geotechnical applications and little research exists for the application of turbidity reduction in water treatment. With the development of new materials in geosynthetics today, it was hypothesized that the turbidity removal efficiency can be improved further by selecting appropriate materials. Two different geosynthetic materials (75 micron) tested at a filtration rate of 0.7 m/h yielded 30-45% reduction in turbidity with relatively minor head loss. It was found that the non-woven geotextile Propex 1701 retained the highest performance in both filtration efficiency and head loss across the varying turbidity ranges in comparison to other geotextiles tested. With 5 layers of the Propex 1701 an average percent reduction of approximately 67% was achieved with a head loss average of 4mm over the two and half hour testing period. Using the data collected for the Propex 1701 a mathematical model was developed for predicting the expected percent reduction given the ability to control the cost and as a result the number of layers to be used in a given filtration scenario.
Resumo:
The Kerala Water Authority requested the School of Environmental Studies to carry out investigations on the mechanism of sporadic mobilization of iron and odour in the raw water drawn to the drinking water treatment plant. The currently used treatment process failed to remove iron completely. This led to problems in the filter and complaints of taste and colour due to iron in the finished water. The sporadic nature of the problem itself made the trouble shooting difficult. The problem was looked in from three points of view. 1. Influence of environmental (climatic) conditions on the dynamics of the relevant basin of the reservoir. 2. Influence of the physical dynamics on the physico — chemical quality of water. 3. Identification of cost-effective treatment processes to suit the existing plant. Since the problem emerged only during the post- monsoon to pre-monsoon months, a related problem was investigated, namely, influence of anions on the oxidation of Fe(II) in natural waters by air. This is presented in Part II of the dissertation.
Resumo:
This paper describes a study assessing the sound levels and noise exposures of a municipal water treatment plant to determine the level of employee noise exposure dosages and to make any necessary recommendations regarding reducing the risk of noise induced hearing loss in employees.
Resumo:
This paper evaluates the efficiency of geotextile filters for sludge from a compact water treatment plant (WTP). The key aspects required in the methodology of selection and designing geotextile filters for sludge from dewatering was investigated based on laboratory tests results. The analyses were supported by the measured filtrated volume of water and turbidity resulting from variable head permeability tests carried out in two geotextiles and using the conventional granular filter (sand and gravel). The results of the present study showed that more than 75% of the dewatering sludge can be filtrated with low turbidity, which permits that this water can return to the treatment plan in order to be reuse in another cycle. The reduced volume of sludge retained by the geotextile that is transferred to the drying pound increases its efficiency by reducing the drying time. The low volume of the dry waste can be removed and the geotextile can be easily cleaned or replaced when needed. These procedures significantly reduce the volume of water needed in dewatering and also avoids waste discharges in the environment.