967 resultados para Water rock interactions
Resumo:
Laboratory time-scale experiments were conducted on gravels from the Carnmenellis granite, Cornwall, England, with the purpose of evaluating the release of natural uranium isotopes to the water phase. The implications of these results for the production of enhanced U-234/U-238 activity ratios in Cornish groundwaters are discussed. It is suggested that the U-234/U-238 lab data can be used to interpret activity ratios from Cornwall, even when the observed inverse relationship between dissolved U and U-234/U-238 in leachates/etchates is taken into account. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
A large hydrochemical data-set for the East Yorkshire Chalk has been assessed. Controls on the distribution of water qualities within this aquifer reflect: water-rock interactions (affecting especially the carbonate system and associated geochemistry); effects of land-use change (especially where the aquifer is unconfined); saline intrusion and aquifer refreshening (including ion exchange effects); and aquifer overexploitation (in the semi-confined and confined zones of the aquifer). Both Sr and I prove useful indicators of groundwater ages, with I/Cl ratios characterising two sources of saline waters. The hydrochemical evidence clearly reveals the importance of both recent management decisions and palaeohydrogeology in determining the evolution and distribution of groundwater salinity within the artesian and confined zones of the aquifer. Waters currently encountered in the aquifer are identified as complex (and potentially dynamic) mixtures between modern recharge waters, modern seawater, and old seawaters which entered the aquifer many millennia ago.
Resumo:
Three dimensional models and groundwater quality are combined to better understand and conceptualise groundwater systems in complex geological settings in the Wairau Plain, Marlborough. Hydrochemical facies, which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters, are identified within geological formations to assess natural water-rock interactions, redox potential and human agricultural impact on groundwater quality in the Wairau Plain.
Resumo:
Natural fluids with water-salt-gas are often found in every sphere of the Earth, whose physicochemical properties and geochemical behaviors are complicated. To study these properties and behaviors turns out to be one of the challenging issues in geosciences. Traditional approaches mainly depend on experiments and observations. However, it is impossible to obtain a large number of data covering a large T-P space of the Earth by experimental methods in the near future, which will hinder the advance of the theoretical study. Therefore, it is important to model natural fluids by advanced theoretical methods, by which limited experimental data can be extended to a large temperature-pressure-composition space. Physicochemical models developed in this dissertation are not only more accurate, but also extend the applied T-P-m region of the experimental data of the multi-fluid systems by about two times. These models provide the new and accurate theoretical tools for the geochemical research, especially for the water-rock interactions and the study of the fluid inclusions. The main achievements can be summarized as follows: (1) A solubility model on components of natural gases is presented. The solubility model on the systems of CH4-H2O-NaCl, C2H6-H2O-NaCl or N2-H2O-NaCl takes advantage of modern physicochemical theory and methods, and is an improvement over previous models whose prediction and precision are relatively poor. The model can predict not only the gas solubility in liquid phase but also water content in the gas phase. In addition, it can predict gases (methane or nitrogen) solubility in seawater and brine. Isochores can be determined, which are very important in the interpretation of fluid inclusions. (2) A density model on common aqueous salt solutions is developed. The density models with high precision for common aqueous salt solutions (H2O-NaCl, H2O-LiCl, H2O-KCl, H2O-MgCl2, H2O-CaCl2, H2O-SrCl2 or H2O-BaCl2) are absent in the past. Previous density models are limited to the relatively small range of experimental data, and cannot meet the requirement of the study of natural fluids. So a general density model of the above systems is presented by us based on the international standard density model of the water. The model exceeds the other models in both precision and prediction. (3) A viscosity model on common aqueous alkali-chloride solutions is proposed. Dynamic viscosity of water-salt systems, an important physics variable, is widely used in three-dimension simulation of the fluids. But in most cases, due to the lack of viscosity models with a wide T-P range, the viscosity of aqueous salt solutions is replaced by that of the water, giving rise to a relatively large uncertainty. A viscosity model with good prediction for the systems (H2O-NaCl, H2O-LiCl or H2O-KCl) is presented on the base of the international standard viscosity model of water and the density model developed before. (4) Equation of State applied in fluid inclusions. The best Equations of State in the world developed by others or us recently are applied in the study of the fluid inclusions. Phase equilibria and isochores of unitary system (e.g. H2O, CO2, CH4, O2, N2, C2H6 or H2S), binary H2O-NaCl system and ternary H2O-CH4-NaCl system are finished. From these programs and thermodynamic equations of coexisting ores, the physicochemical conditions before or after the deposits form can be determined. To some extent, it is a better tool.
Resumo:
Geofluid in sedimentary basins is related to petroleum generation, migration, accumulation and preservation, and is a topic of geological frontier. By integrating the multi-discipline methods of petroleum geochemistry, sedimentology, hydrogeology, petroleum geology and experimental geochemistry, the thesis has carried out experiments of microcline dissolution in solutions with organic acids, crude oil, brines with high total dissolved solids (TDS), and has dealt with Al distribution between the crude oil and the brines after the experiments. Cases for study includes Central Tarim, Hetianhe Gas Field and Kucha forland basin with data containing fluid chemistry and isotopic compositions, thin sections of sandstones and carbonates, homogenization temperatures and salinities of fluid inclusions, isotopic compositions of bulk rock and autigenic minerals. The aims are to elucidate fluid origin and flow in the three areas, effect of hydrocarbon emplacement on diagenesis, and to show occurrence of microbe-mediated, and thermochemical sulfate reduction in the Tarim Basin. Microcline dissolution experiments show that after 100 hour, part of the dissolved Al distributes in the crude oil, and the Al concentrations in the crude oil rise when organic acids are added. The result can be used to explain that most oilfield waters in the Tarim Basin are characterized by less than 3mg/L Al. Crude oil added to the solutions can enhance microcline dissolution, which is also observed in the case - Silurian sandstones with early crude oil emplacement in the Central Tarim. Al and Si have higher concentrations in the experiments of oxalic acid than of acetic acid under the same pH conditions, suggesting that there exist Al-oxalate and Si-oxalate complexes. Presence of acetate can enhance the activity of Ca and Al, but Al concentrations have not been increased significantly due to formation of small Al-acetate complex during the experiments. Relationships between δD and δ~(18)O in conjunction with chemistry of oilfield waters show that the waters are evaporated connate waters, which subsequently mixed with meteoric water, and were influenced by water-rock interactions such as salt dissolution, dolomitization of calcite, albitization of feldspar. In the Hetianhe Gas Field where salt dissolution took place, δD and δ~(18)O values can be used to trace nicely meteoric water recharge area and flow direction, but TDS can not. Part of the waters have high TDS but very light δD and δ~(18)O. When combined with paleo-topography, or fluid potentials, meteoric water is suggested to flow eastward in the Hetianhe Gas Field, which is the same with the Central Tarim. Whist in the Kuche forland basin, meteoric water may have permeated Cambrian-Ordovician strata. Relationship between ~(87)Sr/~(86)Sr and 1/Sr can be used to indicate migration and mixing of brines from carbonate strata (low ~(87)Sr/~(86)Sr ratio but high Sr content), clastic strata (high ~(87)Sr/~(86)Sr ratio but low Sr content) and crystalline basement (high ~(87)Sr/~(86)Sr ratio and heavy δ~(18)O value). Using this approach, it can be found that ~(87)Sr-depleted brine from Ordovician carbonates have migrated up to and mixed with ~(87)Sr-enriched waters from Silurian and Carboniferous sandstones, and that Silurian brines have mixed with meteoric water. In the Kuche forland basin, brines from the Cambrian and Ordovician carbonates have higher ~(87)Sr/~(86)Sr ratios than those from the overlying sandstones, when combined with chemistry, δ~(15)N and ~3He/~4He ratios of the coexisting natural gases, suggesting that the brines were derived from the basement. There exists some debate on the effect of hydrocarbon emplacement on mineral diagenesis. Case-study from Silurian sandstones in the Central Tarim show that quartz has kept overgrowing secondarily when oil saturation was decreased by meteoric water flushing subsequently to hydrocarbon emplacement. Silicon precipitates on the water-wet quartz surface, leading to decreased Si concentration close to the surface. A Si grads can result in Si diffusion, which supplies Si for quartz overgrowth. Hydrocarbon oxidation-sulfate reduction is an important type of organic-inorganic interaction. Not only can it make secondary alteration of hydrocarbons, but generate H_2S and CO_2 gases which can improve reservoir property. Thermochemical sulfate reduction took place at the temperatures more than 125 ℃ to 140 ℃ in the Cambrian-Ordovician carbonates, the products - H_2S and CO_2 gases migrated up to the Silurian, and precipitated as pyrite and calcite, respectively. The pyrite has an average δ~(34)S value close to those of Ordovician seawater and anhydrite, and calcite has δ~(13)C value as low as -21.5‰. In the Hetianhe Gas Field, sulfate reduction bacteria carried by meteoric water flowing eastward may have preferentially depleted ~(12)C of light hydrocarbon gases, and results in heavier δ~(13)C values of the residual hydrocarbon gases and higher molar CO_2 in the natural gases in the west than in the east. Coexisting pyrite has δ~(34)S values as low as -24.9‰.
Resumo:
The radioactivity due to 238U and 234U in three aquifer systems occurring within the Paraná sedimentary basin, South America, has been investigated. Uranium is much less dissolved from fractured igneous rocks than from the porous sedimentary rocks as indicated by the U-mobility coefficients between 7. 6 × 10-6 and 1. 2 × 10-3 g cm-3. These values are also compatible with the U preference ratios relative to Na, K, Ca, Mg and SiO2, which showed that U is never preferentially mobilized in the liquid phase during the flow occurring in cracks, fissures, fractures and faults of the igneous basaltic rocks. Experimental dissolution of diabase grains on a time-scale laboratory has demonstrated that the U dissolution appeared to be a two-stage process characterized by linear and second-order kinetics. The U dissolution rate was 8 × 10-16 mol m-2 s-1 that is within the range of 4 × 10-16-3 × 10-14 mol m-2 s-1 estimated for other rock types. The 234U/238U activity ratio of dissolved U in solutions was higher than unity, a typical result expected during the water-rock interactions when preferential 234U-leach from the rock surfaces takes place. Some U-isotopes data allowed estimating 320 ka for the groundwater residence time in a sector of a transect in São Paulo State. A modeling has been also realized considering all U-isotopes data obtained in Bauru (35 samples), Serra Geral (16 samples) and Guarani (29 samples) aquifers. The results indicated that the Bauru aquifer waters may result from the admixture of waters from Guarani (1. 5 %) and Serra Geral (98. 5 %) aquifers. © 2012 Springer-Verlag.
Resumo:
The equivalent uranium (eU) activity concentration was analysed in selected granite samples at several sites in Porto Alegre, Southern Brazil, to obtain information on the radon (222Rn) generation by the aquifer rock matrices. Radon analyses of ground water and soil samples were also performed. Several samples exhibited a dissolved 222Rn activity concentration exceeding the World Health Organization maximum limit of 100 Bq l-1. The dissolved radon content in ground waters from the Fractured Precambrian Aquifer System exhibited a direct significant correlation with the eU in the rock matrices, which is a typical result of water-rock interactions. Variation in the soil's porosity was confirmed as an important factor for 222Rn release, as expected, due to its gaseous nature. Thus, although the calcic-alkaline to alkaline Precambrian granitoid rocks of the study area are important reservoirs for underground resources, they can release high amounts of radon gas into the liquid phase. © 2013 Copyright Taylor and Francis Group, LLC.