976 resultados para Water mass variations
Resumo:
Time-variable gravity data from the Gravity Recovery And Climate Experiment (GRACE) mission are used to study total water content over Australia for the period 2002–2010. A time-varying annual signal explains 61% of the variance of the data, in good agreement with two independent estimates of the same quantity from hydrological models. Water mass content variations across Australia are linked to Pacific and Indian Ocean variability, associated with El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), respectively. From 1989, positive (negative) IOD phases were related to anomalously low (high) precipitation in southeastern Australia, associated with a reduced (enhanced) tropical moisture flux. In particular, the sustained water mass content reduction over central and southern regions of Australia during the period 2006–2008 is associated with three consecutive positive IOD events.
Resumo:
Four sediment cores from the central and northern Greenland Sea basin, a crucial area for the renewal of North Atlantic deep water, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon iso- topes as well as ice-rafted debris to reconstruct the environ- mental variability in the last 23 kyr. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and sea-ice bearing surface water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. During the Younger Dryas interval the last major freshwater event occurred in the region. The onset of the Holocene interglacial was marked by an increase in the advection of Atlantic Wa- ter and a rise in sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, benthic isotope data indicate that the rate of overturn- ing circulation reached a maximum in the central Greenland Sea around 7ka. After 6-5ka a SST cooling and increas- ing sea-ice cover is noted. Conditions during this so-called "Neoglacial" cooling, however, changed after 3 ka, probably due to enhanced sea-ice expansion, which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea, which were fed by increased inflow of At- lantic Water from the eastern Nordic Seas. Our data reveal that the Holocene oceanographic conditions in the Green- land Sea did not develop uniformly. These variations were a response to a complex interplay between the Atlantic and Polar water masses, the rate of sea-ice formation and melting and its effect on vertical convection intensity during times of Northern Hemisphere insolation changes.
Resumo:
Yhteenveto: Maankosteusvaihtelut talvella hiekkamaassa
Resumo:
Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct.-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12A degrees N near the sea surface. This bifurcation shifts northward with depth, reaching about 20A degrees N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21A degrees N, intensifies southward, with its upper boundary surfacing around 12A degrees N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10A degrees N and 12A degrees N at 130A degrees E. In the upper 2 000 dbar, the total westward transport across 130A degrees E between 7.5A degrees N and 18A degrees N reaches 65.4 Sv (1 Sv = 10(-6) m(3)s(-1)), the northward transport across 18A degrees N from Luzon coast to 130A degrees E is up to 35.0 Sv, and the southward transport across 7.5A degrees N from Mindanao coast to 130A degrees E is 27.9 Sv.
Resumo:
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
Resumo:
A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.
Resumo:
The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.
Resumo:
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The study conducted on the salinity intrusion and seasonal water quality variations in the tidal canals of cochin. The main objectives are, salinity intrusion profile, water quality variation of the surface water of the canals,hierarchical utility of the water bodies and to understand the non-conservative components in the water body. The parameters monitored werepH,temperature,alkalinity,conductivity,DO(dissolvedoxygen),COD(chemical oxygen demand),BOD(biochemical oxygen demand0,chloride, total hardness, calcium hardness, dissolved phosphate, nitrate, total iron, sulphate, turbidity, total coliform and SUVA at 254nm. The tidal canals of GCDA were found to be creeks extending to the interior, canals inter connecting parts of the estuary or canals with seasonally broken segments. Based on utility the canals could be classified as: canals heavely polluted and very saline,canals polluted by urban waste , canals having fresh water for most part of the year and not much polluted, fresh water bodies heavily polluted. During the rainy months carbon fixation by plankton is nonexistent,and during the dry months Chitrapuzha becomes a sink of phosphate. The study indicated abiotic subrouts for dissolved phosphate and revealed the potential pitfalls in LOICZ modeling exercise on sewage ladentidal canals. It was also found that all canals except for the canals of West cochin and chittoorpuzha have fresh water for some part of the year. The water quality index in the durable fresh water stretches was found to be of below average category.
Resumo:
A simple polynya flux model driven by standard atmospheric forcing is used to investigate the ice formation that took place during an exceptionally strong and consistent western New Siberian (WNS) polynya event in 2004 in the Laptev Sea. Whether formation rates are high enough to erode the stratification of the water column beneath is examined by adding the brine released during the 2004 polynya event to the average winter density stratification of the water body, preconditioned by summers with a cyclonic atmospheric forcing (comparatively weakly stratified water column). Beforehand, the model performance is tested through a simulation of a well‐documented event in April 2008. Neglecting the replenishment of water masses by advection into the polynya area, we find the probability for the occurrence of density‐driven convection down to the bottom to be low. Our findings can be explained by the distinct vertical density gradient that characterizes the area of the WNS polynya and the apparent lack of extreme events in the eastern Laptev Sea. The simple approach is expected to be sufficiently rigorous, since the simulated event is exceptionally strong and consistent, the ice production and salt rejection rates are likely to be overestimated, and the amount of salt rejected is distrusted over a comparatively weakly stratified water column. We conclude that the observed erosion of the halocline and formation of vertically mixed water layers during a WNS polynya event is therefore predominantly related to wind‐ and tidally driven turbulent mixing processes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)