987 resultados para Water borne diseases,
Resumo:
Oomycete diseases cause significant losses across a broad range of crop and aquaculture commodities worldwide. These losses can be greatly reduced by disease management practices steered by accurate and early diagnoses of pathogen presence. Determinations of disease potential can help guide optimal crop rotation regimes, varietal selections, targeted control measures, harvest timings and crop post-harvest handling. Pathogen detection prior to infection can also reduce the incidence of disease epidemics. Classical methods for the isolation of oomycete pathogens are normally deployed only after disease symptom appearance. These processes are often-time consuming, relying on culturing the putative pathogen(s) and the availability of expert taxonomic skills for accurate identification; a situation that frequently results in either delayed application, or routine ‘blanket’ over-application of control measures. Increasing concerns about pesticides in the environment and the food chain, removal or restriction of their usage combined with rising costs have focussed interest in the development and improvement of disease management systems. To be effective, these require timely, accurate and preferably quantitatve diagnoses. A wide range of rapid diagnostic tools, from point of care immunodiagnostic kits to next generation nucleotide sequencing have potential application in oomycete disease management. Here we review currently-available as well as promising new technologies in the context of commercial agricultural production systems, considering the impacts of specific biotic and abiotic and other important factors such as speed and ease of access to information and cost effectiveness
Resumo:
A review is presented of the interrelationships between arthropod vectors, the diseases they transmit and agricultural development. Particular attention is given to the effects of deforestation, livestock development and irrigation on the abundance of vectors and changing patterns of diseases such as malaria, trypanosomiases, leishmaniasis, Chagas' and some arboviral infections. The question as whether keeping livestock diverts biting away from people and reduces diseases such as malaria - that is zooprophylaxis, or whether the presence of cattle actually increases biting populations is discussed.
Resumo:
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases. Tick-borne diseases are responsible worldwide for great economic losses in terms of mortality and morbidity of livestock animals. This review concerns to the different tick and tick-parasites control methods having a major focus on vaccines. Control of tick infestations has been mainly based on the use of acaricides, a control measure with serious drawbacks, as responsible for the contamination of milk and meat products, as a selective factor for acaricide-resistant ticks and as an environmental contaminant. Research on alternatives to the use of acaricides is strongly represented by tick vaccines considered a more cost-effective and environmentally safe strategy. Vaccines based on the Bm86 tick antigen were used in the first commercially available cattle tick vaccines and showed good results in reducing tick numbers, affecting weight and reproductive performance of female ticks which resulted in reduction of cattle tick populations over time and consequently lower reduction of the pathogen agents they carry.
Resumo:
An excess of hepatitis cases, in the research center of Petrobrás located in the Fundaão Island, within the city of Rio de Janeiro, was notified during the second half of March 1980. In recent years this center has had an average of four cases per year, but between March 5th and April 25th, sixteen cases were reported. The cause and possible source of infection were investigated. A serologic diagnosis of hepatitis A was made by showing IgG serum antibodies against this virus in patients. No subclinical cases among a group of 60 healthy employees could be identified. A questionnaire was circulated to investigate a possible commom source of infection. Evaluation of the water supply system indicated that it had recently been contaminated. Information obtained from other medical services in the island failed to reveal that the episode was part of a larger outbreak.
Resumo:
 The risk of transmission of blood-borne pathogens in the health-care setting has become a matter of increasing concern in Ireland in recent years. Health-care workers undertaking exposure-prone procedures are at risk of contracting blood-borne diseases from the patients they are treating and there is also a small risk that patients who are undergoing such procedures may become infected by the health-care workers who are treating them. An Advisory Group on the Transmission of Infectious Diseases in the Health-Care Setting was established in 1995 to advise the Minister for Health on the prevention of the transmission of such diseases. The Advisory Group published its report in 1997. It was realised at that time that this matter would need to be kept under review and a Standing Advisory Committee was established. Guidelines on this subject were published by the Advisory Committee in June1999. In the current document, these guidelines have been substantially revised in the light of recent information and technical developments and are now considered to be a Code of Practice in the area of prevention of the transmission of blood-borne pathogens in the health-care setting.  Â
Resumo:
A study of crepuscular and night-biting mosquitoes was conducted at remote settlements along the Padauiri River, middle Negro River, state of Amazonas, Brazil. Collections were performed with human bait and a CDC-light trap on three consecutive days per month from June 2003-May 2004. In total, 1,203 h of collection were performed, of which 384 were outside and 819 were inside houses. At total of 11,612 specimens were captured, and Anophelinae (6.01%) were much less frequent than Culicinae (93.94%). Anopheles darlingi was the most frequent Anophelinae collected. Among the culicines, 2,666 Culex (Ae.) clastrieri Casal & Garcia, 2,394 Culex. (Mel.) vomerifer Komp, and 1,252 Culex (Mel.) eastor Dyar were the most frequent species collected. The diversity of insects found reveals the receptivity of the area towards a variety of diseases facilitated by the presence of vectors involved in the transmission of Plasmodium, arboviruses and other infectious agents.
Resumo:
Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.
Resumo:
In this opinion paper, we discuss the potential and challenges of using the symbiont Wolbachia to block mosquito transmitted diseases such as dengue, malaria and chikungunya in Latin America.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
The tiniest Union territory of India, Lakshadweep, is an archipelago, with an area of 32 Sq. km. consisting of 12 atolls, three reefs and five submerged banks, lies between 8° and 12°30'N latitudes and 71° and 74" E longitudes. It is one of the most important and critical territories of India from economic and defence point of view. Specialised environment having typical geological set up, Lakshadweep is ecologically sensitive to even slight climatic or anthropogenic interference. Pollution of coastal seas, over exploitation and contamination of the fresh water sources are thus become great concerns to the existence of the island. Typical geological set up and interference cause threat to the ecology of the fragile environment and resources of the island as well as its resources. Marine pollution and ground water contamination are concerns in this regard. Even though attentions were made to assess the physico—chemical and bacteriological status of the marine and groundwater systems separately, an integrated approach has not been evolved. The present study with its broad objectives is attempted for an integrated assessment of microbiological, physicochemical and biological characteristics of the surrounding seawater and microbiological and physico—chemical characteristics of the ground water in Kavaratti island. The entire study has been organised in 4 chapters
Resumo:
Water is the very essential livelihood for mankind. The United Nations suggest that each person needs 20-50 litres of water a day to ensure basic needs of drinking, cooking and cleaning. It was also endorsed by the Indian National Water Policy 2002, with the provision that adequate safe drinking water facilities should be provided to the entire population both in urban and in rural areas. About 1.42 million rural habitations in India are affected by chemical contamination. The provision of clean drinking water has been given priority in the Constitution of India, in Article 47 conferring the duty of providing clean drinking water and improving public health standards to the State. Excessive dependence of ground water results in depletion of ground water, water contamination and water borne diseases. Thus, access to safe and reliable water supply is one of the serious concerns in rural water supply programme. Though government takes certain serious steps in addressing the drinking water issues in rural areas, still there is a huge gap between demand and supply. The Draft National Water Policy 2012 also states that Water quality and quantity are interlinked and need to be managed in an integrated manner and with Stakeholder participation. Water Resources Management aims at optimizing the available natural water flows, including surface water and groundwater, to satisfy competing needs. The World Bank also emphasizes on managing water resources, strengthening institutions, identifying and implementing measures of improving water governance and increasing the efficiency of water use. Therefore stakeholders’ participation is viewed important in managing water resources at different levels and range. This paper attempts to reflect up on portray the drinking water issues in rural India, and highlights the significance of Integrated Water Resource Management as the significant part of Millennium Development Goals, and Stakeholders’ participation in water resources management.
Resumo:
S'avaluaren 58 soques de Pseudomonas fluorescens i Pantoea agglomerans per la seva eficàcia en el biocontrol de la malaltia causada per l'oomicet Phytophthora cactorum en maduixera i pel nematode formador de gal·les Meloidogyne javanica en el portaempelt GF-677. Es desenvolupà un mètode ex vivo d'inoculació de fulla amb l'objectiu de seleccionar soques bacterianes com a agents de control biològic de P. cactorum en maduixera. Tres soques de P. fluorescens es seleccionaren com a soques eficaces en el biocontrol del patogen en fulles i en la reducció de la malaltia en plantes de maduixera. La combinació de soques semblà millorar la consistència del biocontrol en comparació amb les soques aplicades individualment. Tres soques de P. fluorescens es seleccionaren per la seva eficàcia en la reducció de la infecció de M. javanica en portaempelts GF-677. La combinació d'aquestes soques no incrementà l'eficàcia del biocontrol, però semblà reduir la seva variabilitat.
Resumo:
Some proponents of local knowledge, such as Sillitoe (2010), have expressed second thoughts about its capacity to effect development on the ‘revolutionary’ scale once predicted. Our argument in this article follows a similar route. Recent research into the management of livestock in South Africa makes clear that rural African livestock farmers experience uncertainty in relation to the control of stock diseases. State provision of veterinary services has been significantly reduced over the past decade. Both white and African livestock owners are to a greater extent left to their own devices. In some areas of animal disease management, African livestock owners have recourse to tried-and-tested local remedies, which are largely plant-based. But especially in the critical sphere of tick control, efficacious treatments are less evident, and livestock owners struggle to find adequate solutions to high tickloads. This is particularly important in South Africa in the early twenty-first century because land reform and the freedom to purchase land in the post-apartheid context affords African stockowners opportunities to expand livestock holdings. Our research suggests that the limits of local knowledge in dealing with ticks is one of the central problems faced by African livestock owners. We judge this not only in relation to efficacy but also the perceptions of livestock owners themselves. While confidence and practice varies, and there is increasing resort of chemical acaricides we were struck by the uncertainty of livestock owners over the best strategies.
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.