916 resultados para Water Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater is increasingly recognised as an important yet vulnerable natural resource, and a key consideration in water cycle management. However, communication of sub-surface water system behaviour, as an important part of encouraging better water management, is visually difficult. Modern 3D visualisation techniques can be used to effectively communicate these complex behaviours to engage and inform community stakeholders. Most software developed for this purpose is expensive and requires specialist skills. The Groundwater Visualisation System (GVS) developed by QUT integrates a wide range of surface and sub-surface data, to produce a 3D visualisation of the behaviour, structure and connectivity of groundwater/surface water systems. Surface data (elevation, surface water, land use, vegetation and geology) and data collected from boreholes (bore locations and subsurface geology) are combined to visualise the nature, structure and connectivity of groundwater/surface water systems. Time-series data (water levels, groundwater quality, rainfall, stream flow and groundwater abstraction) is displayed as an animation within the 3D framework, or graphically, to show water system condition changes over time. GVS delivers an interactive, stand-alone 3D Visualisation product that can be used in a standard PC environment. No specialised training or modelling skills are required. The software has been used extensively in the SEQ region to inform and engage both water managers and the community alike. Examples will be given of GVS visualisations developed in areas where there have been community concerns around groundwater over-use and contamination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the use of Stem theory as applied to a clay-water electrolyte system, which is more realistic to understand the force system at micro level man the Gouy-Chapman theory. The influence of the Stern layer on potential-distance relationship has been presented quantitatively for certain specified clay-water systems and the results are compared with the Gouy-Chapman model. A detailed parametric study concerning the number of adsorption spots on the clay platelet, the thickness of the Stern layer, specific adsorption potential and the value of dielectric constant of the pore fluid in the Stern layer, was carried out. This study investigates that the potential obtained at any distance using the Stern theory is higher than that obtained by the Gouy-Chapman theory. The hydrated size of the ion is found to have a significant influence on the potential-distance relationship for a given clay, pore fluid characteristics and valence of the exchangeable ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protozoans of Lake Donghu were collected from five stations using the PFU method. The sampling was conducted for one year and two times a month. The aim of this research was to test the applicability of a new protozoa biotic index, species pollution value (SPV) and community pollution value (CPV), established by the authors using data from the River Hanjiang. Each station's CPV was calculated from the SPV and the correlation analysis between the CPV and the comprehensive chemical index of stations I, II, III showed a significant correlation between them. The pollution status of the five stations was correctly evaluated by the CPV. These results suggested that the biotic index could be applied in water systems other than the River Hanjiang. The SPV of some protozoa species in Lake Donghu, not observed in the River Hanjiang were established. In order to further test the applicability of the biotic index, protozoan and chemistry data from the Rivers Torrente Stirone and Parma of Italy were used. The results showed that the CPV for the two rivers had a close relationship with the chemical water quality, which indicated that the biotic index could be applied in other parts of the world for the monitoring and estimating of water quality. Since the results of testing and verifying the biotic index in some other water systems in China were also satisfactory, this indicated that the biotic index has an extensive suitability for freshwater ecosystems. As long as more than 50% of the species in a sample have a SPV, the CPV calculated from the SPV is reliable for monitoring and evaluating water quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial pseudoternary phase diagrams were constructed for soy bean oil (SBO)/surfactant/NaCl aqueous solution systems, at 25 degrees C, using the anionic sodium bis(2-ethylhexyl) sulfosuccinate (ACT) and zwiterionic phosphatidylcholine (PC) or mixtures of these surfactants. The isotropic single phase of water-in-oil (W/O) microemulsions (MEs) is shown in the phase diagram and their viscosity reported. ME samples containing small amount of surfactant exhibit slightly higher viscosity than pure SBO, and were used in the solubilization of small water soluble molecules. NaCl enhances the area of the ME phase and MEs with different surfactant composition exhibit different induction time as obtained from tests of oxidative stability, and so are the MEs enriched with ascorbic acid, folic acid and FeSO4, with the latter exhibiting lower stability. The so prepared enriched soy bean oil has potential application in food industry since the surfactants are food grade. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Environmental Health (EH) program of Peace Corps (PC) Panama and a non-governmental organization (NGO) Waterlines have been assisting rural communities in Panama gain access to improved water sources through the practice of community management (CM) model and participatory development. Unfortunately, there is little information available on how a water system is functioning once the construction is complete and the volunteer leaves the community. This is a concern when the recent literature suggests that most communities are not able to indefinitely maintain a rural water system (RWS) without some form of external assistance (Sara and Katz, 1997; Newman et al, 2002; Lockwood, 2002, 2003, 2004; IRC, 2003; Schweitzer, 2009). Recognizing this concern, the EH program director encouraged the author to complete a postproject assessment of the past EH water projects. In order to carry out the investigation, an easy to use monitoring and evaluation tool was developed based on literature review and the author’s three years of field experience in rural Panama. The study methodology consists of benchmark scoring systems to rate the following ten indicators: watershed, source capture, transmission line, storage tank, distribution system, system reliability, willingness to pay, accounting/transparency, maintenance, and active water committee members. The assessment of 28 communities across the country revealed that the current state of physical infrastructure, as well as the financial, managerial and technical capabilities of water committees varied significantly depending on the community. While some communities are enjoying continued service and their water committee completing all of its responsibilities, others have seen their water systems fall apart and be abandoned. Overall, the higher score were more prevalent for all ten indicators. However, even the communities with the highest scores requested some form of additional assistance. The conclusion from the assessment suggests that the EH program should incorporate an institutional support mechanism (ISM) to its sector policy in order to systematically provide follow-up support to rural communities in Panama. A full-time circuit rider with flexible funding would be able to provide additional technical support, training and encouragement to those communities in need.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, rural populations are far less likely to have access to clean drinking water than are urban ones. In many developing countries, the current approach to rural water supply uses a model of demand-driven, community-managed water systems. In Suriname, South America rural populations have limited access to improved water supplies; community-managed water supply systems have been installed in several rural communities by nongovernmental organizations as part of the solution. To date, there has been no review of the performance of these water supply systems. This report presents the results of an investigation of three rural water supply systems constructed in Saramaka villages in the interior of Suriname. The investigation used a combination of qualitative and quantitative methods, coupled with ethnographic information, to construct a comprehensive overview of these water systems. This overview includes the water use of the communities, the current status of the water supply systems, histories and sustainability of the water supply projects, technical reviews, and community perceptions. From this overview, factors important to the sustainability of these water systems were identified. Community water supply systems are engineered solutions that operate through social cooperation. The results from this investigation show that technical adequacy is the first and most critical factor for long-term sustainability of a water system. It also shows that technical adequacy is dependent on the appropriateness of the engineering design for the social, cultural, and natural setting in which it takes place. The complex relationships between technical adequacy, community support, and the involvement of women play important roles in the success of water supply projects. Addressing these factors during the project process and taking advantage of alternative water resources may increase the supply of improved drinking water to rural communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainwater harvesting (RWH) has a long history and has been supported as an appropriate technology and relatively cheap source of domestic water supply. This study compares the suitability of RWH and piped water systems in three rural Dominican communities seeking to improve their water systems. Ethnographic methods considering the views of residents and feasibility and cost analysis of the options were used to conclude that RWH is not a feasible or cost-effective solution for domestic water needs of all households in the communities studied. RWH investment is best left to individual households that can implement informal RWH with incremental increases in storage volume. Piped water distribution (PWD) systems perceived as too large or expensive to implement have much lower capital costs and are more supported by residents as a solution because they provide large quantities of water needed to maintain water services beyond mere survival levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling of future water systems at the regional scale is a difficult task due to the complexity of current structures (multiple competing water uses, multiple actors, formal and informal rules) both temporally and spatially. Representing this complexity in the modeling process is a challenge that can be addressed by an interdisciplinary and holistic approach. The assessment of the water system of the Crans-Montana-Sierre area (Switzerland) and its evolution until 2050 were tackled by combining glaciological, hydrogeological, and hydrological measurements and modeling with the evaluation of water use through documentary, statistical and interview-based analyses. Four visions of future regional development were co-produced with a group of stakeholders and were then used as a basis for estimating future water demand. The comparison of the available water resource and the water demand at monthly time scale allowed us to conclude that for the four scenarios socioeconomic factors will impact on the future water systems more than climatic factors. An analysis of the sustainability of the current and future water systems based on four visions of regional development allowed us to identify those scenarios that will be more sustainable and that should be adopted by the decision-makers. The results were then presented to the stakeholders through five key messages. The challenges of communicating the results in such a way with stakeholders are discussed at the end of the article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar heating of potable water has traditionally been accomplished through the use of solar thermal (ST) collectors. With the recent increases in availability and lower cost of photovoltaic (PV) panels, the potential of coupling PV solar arrays to electrically heated domestic hot water (DHW) tanks has been considered. Additionally, innovations in the SDHW industry have led to the creation of photovoltaic/thermal (PV/T) collectors, which heat water using both electrical and thermal energy. The current work compared the performance and cost-effectiveness of a traditional solar thermal (ST) DHW system to PV-solar-electric DHW systems and a PV/T DHW system. To accomplish this, a detailed TRNSYS model of the solar hot water systems was created and annual simulations were performed for 250 L/day and 325 L/day loads in Toronto, Vancouver, Montreal, Halifax, and Calgary. It was shown that when considering thermal performance, PV-DHW systems were not competitive when compared to ST-DHW and PVT-DHW systems. As an example, for Toronto the simulated annual solar fractions of PV-DHW systems were approximately 30%, while the ST-DHW and PVT-DHW systems achieved 65% and 71% respectively. With current manufacturing and system costs, the PV-DHW system was the most cost-effective system for domestic purposes. The capital cost of the PV-DHW systems were approximately $1,923-$2,178 depending on the system configuration, and the ST-DHW and PVT system were estimated to have a capital cost of $2,288 and $2,373 respectively. Although the capital cost of the PVT-DHW system was higher than the other systems, a Present Worth analysis for a 20-year period showed that for a 250 L/day load in Toronto the Present Worth of the PV/T system was approximately $4,597, with PV-DHW systems costing approximately $7,683-$7,816 and the ST-DHW system costing $5,238.