871 resultados para Water Distribution Networks Leak Detection I
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
Water service providers (WSPs) in the UK have statutory obligations to supply drinking water to all customers that complies with increasingly stringent water quality regulations and minimum flow and pressure criteria. At the same time, the industry is required by regulators and investors to demonstrate increasing operational efficiency and to meet a wide range of performance criteria that are expected to improve year-on-year. Most WSPs have an ideal for improving the operation of their water supply systems based on increased knowledge and understanding of their assets and a shift to proactive management followed by steadily increasing degrees of system monitoring, automation and optimisation. The fundamental mission is, however, to ensure security of supply, with no interruptions and water quality of the highest standard at the tap. Unfortunately, advanced technologies required to fully understand, manage and automate water supply system operation either do not yet exist, are only partially evolved, or have not yet been reliably proven for live water distribution systems. It is this deficiency that the project NEPTUNE seeks to address by carrying out research into 3 main areas; these are: data and knowledge management; pressure management (including energy management); and the associated complex decision support systems on which to base interventions. The 3-year project started in April of 2007 and has already resulted in a number of research findings under the three main research priority areas (RPA). The paper summarises in greater detail the overall project objectives, the RPA activities and the areas of research innovation that are being undertaken in this major, UK collaborative study. Copyright 2009 ASCE.
Resumo:
Demands are one of the most uncertain parameters in a water distribution network model. A good calibration of the model demands leads to better solutions when using the model for any purpose. A demand pattern calibration methodology that uses a priori information has been developed for calibrating the behaviour of demand groups. Generally, the behaviours of demands in cities are mixed all over the network, contrary to smaller villages where demands are clearly sectorised in residential neighbourhoods, commercial zones and industrial sectors. Demand pattern calibration has a final use for leakage detection and isolation. Detecting a leakage in a pattern that covers nodes spread all over the network makes the isolation unfeasible. Besides, demands in the same zone may be more similar due to the common pressure of the area rather than for the type of contract. For this reason, the demand pattern calibration methodology is applied to a real network with synthetic non-geographic demands for calibrating geographic demand patterns. The results are compared with a previous work where the calibrated patterns were also non-geographic.
Resumo:
The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.
Resumo:
Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels, or explicitly by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain less switches than the maximum. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations improves over the results obtained by a recent state-of-the-art Hybrid Genetic Algorithm for pump scheduling using level-controlled triggers.
Resumo:
Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.
Resumo:
The article reviews the modelling of District Metered Areas (DMAs) with relatively high leakage rate. As a generally recognised approach in modelling of leakage does not exist, modelling of leakage by enginners and other researchers usually takes place by dividing the whole leakage rate evenly to all available nodes of the model. In this article, a new methodology is proposed to determine the nodal leakage by using a hydraulic model. The proposed methodology takes into consideration the IWA water balance methodology, the Minimum Night Flow (MNF) analysis, the number of connections related to each node and the marerial of pipes. In addition, the model is illustrated by a real case study, as it was applied in Kalipoli’s DMA. Results show that the proposed model gives reliable results.
Resumo:
Flow measurement data at the district meter area (DMA) level has the potential for burst detection in the water distribution systems. This work investigates using a polynomial function fitted to the historic flow measurements based on a weighted least-squares method for automatic burst detection in the U.K. water distribution networks. This approach, when used in conjunction with an expectationmaximization (EM) algorithm, can automatically select useful data from the historic flow measurements, which may contain normal and abnormal operating conditions in the distribution network, e.g., water burst. Thus, the model can estimate the normal water flow (nonburst condition), and hence the burst size on the water distribution system can be calculated from the difference between the measured flow and the estimated flow. The distinguishing feature of this method is that the burst detection is fully unsupervised, and the burst events that have occurred in the historic data do not affect the procedure and bias the burst detection algorithm. Experimental validation of the method has been carried out using a series of flushing events that simulate burst conditions to confirm that the simulated burst sizes are capable of being estimated correctly. This method was also applied to eight DMAs with known real burst events, and the results of burst detections are shown to relate to the water company's records of pipeline reparation work. © 2014 American Society of Civil Engineers.
Resumo:
Water distribution systems are important for life saving facilities especially in the recovery after earthquakes. In this paper, a framework is discussed about seismic serviceability of water systems that includes the fragility evaluation of water sources of water distribution networks. Also, a case study is brought about the performance of a water system under different levels of seismic hazard. The seismic serviceability of a water supply system provided by EPANET is evaluated under various levels of seismic hazard. Basically, the assessment process is based on hydraulic analysis and Monte Carlo simulations, implemented with empirical fragility data provided by the American Lifeline Alliance (ALA, 2001) for both pipelines and water facilities. Represented by the Seismic Serviceability Index (Cornell University, 2008), the serviceability of the water distribution system is evaluated under each level of earthquakes with return periods of 72 years, 475 years, and 2475 years. The system serviceability under levels of earthquake hazard are compared with and without considering the seismic fragility of the water source. The results show that the seismic serviceability of the water system decreases with the growing of the return period of seismic hazard, and after considering the seismic fragility of the water source, the seismic serviceability decreases. The results reveal the importance of considering the seismic fragility of water sources, and the growing dependence of the system performance of water system on the seismic resilience of water source under severe earthquakes.
Resumo:
Techniques based on signal analysis for leak detection in water supply systems typically use long pressure and/or flow data series of variable length. This paper presents the feature extraction from pressure signals and their application to the identification of changes related to the onset of a leak. Example signals were acquired from an experimental laboratory circuit, and features were extracted from temporal domain and from transformed signals. Statistical analysis of features values and a classification method were applied. It was verified the feasibility of using feature vectors for distinguish data acquired in the absence or presence of a leak.
Resumo:
In water distribution systems, old metallic pipes have been replaced by plastic pipes due to their deterioration over time. Although acoustic methods are effective in finding leaks in metallic pipes, they have been found to be problematic when applied to plastic pipes due to the high damping within the pipe wall and the surrounding medium. This is responsible for the leak signal not traveling long distances. Moreover, the leak energy in plastic pipes is generally located at a narrow frequency range located at low frequencies. However, the presence of resonances can narrow even more this frequency range. In order to minimise the influence of background noise and resonances on the calculation of the time delay estimate, band-pass filters are often used to supress undesirable frequency components of the noise. The objective of this paper is to investigate the influence of resonances in the pipe system (pipe, valves, connections and hydrants), on the time delay estimate calculated using acoustic signals. Analytical models and actual leak data collected in a bespoke rig located in the United Kingdom are used to investigate this feature.
Leak Detection In Pressure Tubes Of A Pressurized Heavy-Water Reactor By Acoustic-Emission Technique
Resumo:
Leak detection in the fuel channels is one of the challenging problems during the in-service inspection (ISI) of Pressurised Heavy Water Reactors (PHWRs). In this paper, the use of an acoustic emission (AE) technique together with AE signal analysis is described, to detect a leak that was ncountered in one (or more) of the 306 fuel channels of the Madras Atomic Power Station (PHWR), Unit I. The paper describes the problems encountered during the ISI, the experimental methods adopted and the results obtained. Results obtained using acoustic emission signal analysis are compared with those obtained from other leak detection methods used in such cases.
Resumo:
To determine the location of leaks in buried water pipes, acoustic methods are often used. These have proven to be very effective in metallic pipes but have been problematic in modern plastic pipes. In this paper the reason why this is so is discussed together with some measurements that were made on a bespoke test rig built by South Staffs Water plc. A particular problem is the estimate of the wavespeed. Tables are frequently used for this purpose, but these are often inaccurate and this means that a leak cannot be located accurately. An in-situ measure of the wavespeed is thus preferable. In this paper it is shown that there are significant issues in obtaining an accurate estimate of the wavespeed when a leak is present in the system. A method is proposed that overcomes some of these problems, which is discussed and is demonstrated using some data from the bespoke test-rig. © (2013) Trans Tech Publications.