956 resultados para Wasp venom peptides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method incorporating nested collision-induced dissociation/post-source decay (CID/PSD) combined with endopeptidase digestion is described as an approach to determine the sequence of N-terminally modified peptides. The information from immonium and related ions observed in the CID/PSD spectrum was used for the selection of a suitable endopeptidase for the digestion of peptides. Rapid and reliable assignment of peptide sequence was performed by the comparison of CID/PSD spectra of both intact and endopeptidese-digested peptide fragments, since the assignments of the observed fragment ions to either N- or C-terminal ions can thus be carried out unambiguously. This nested CID/PSD method was applied to the sequence determination of two peptides from the solitary wasps Anoplius samariensis and Batozonellus maculifrons (pompilid wasps), which could not be sequenced by the Edman method due to N-terminal modification. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the applicability of the 'nested' collision induced dissociation/post-source decay (CID/PSD) method to the sequencing of novel peptides from solitary wasps which have neurotoxic venom for paralyzing other insects. The CID/PSD spectrum of a ladder peptide derived from an exopeptidase digest was compared with that of the intact peptide. The mass peaks observed only in the CID/PSD spectrum of a ladder peptide were extracted as C-terminal fragment ions. Assignment of C-terminal fragment ions enabled calculation of N-terminal fragment masses, leading to differentiation between N-terminal fragment ions and internal fragment ions. This methodology allowed rapid and sensitive identification by removing ambiguity in the assignment of the fragment ions, and proved useful for sequencing unknown peptides, in particular those available as natural products with a limited supply. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wasp is an important venomous animal that can induce human fatalities. Coagulopathy is a clinical symptom after massive wasp stings, but the reason leading to the envenomation manifestation is still not known. In this paper, a toxin protein is purified and characterized by Sephadex G-75 gel filtration, CM-Sephadex C-25 cationic exchange and fast protein liquid chromatography (FPLC) from the venom of the wasp, Vespa magnifica (Smith). This protein, named magnvesin. contains serine protease-like activity and inhibits blood coagulation. The cDNA encoding magnvesin is cloned from the venom sac cDNA library of the wasp. The deduced protein from the cDNA is composed of 305 amino acid residues. Magnvesin shares 52% identity with allergen serine protease from the wasp Polistes dominulus. Magnvesin exerted its anti-coagulant function by hydrolyzing coagulant factors TF, VII, VIII, IX and X. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wasp is an impor tant venomous animal that can induce human fatalities. Aortic thrombosis and cerebral infarction are major clinical symptoms after massive wasp stings but the reason leading to the envenomation manifestation is still not known. In this paper, a toxin protein is purified and characterized by Sephadex G-75 gel filtration, CM-Sephadex C-25 cationic exchange and fast protein liquid chromatography (FPLC) from the venom of the wasp, Vespa magnifica (Smith). This protein, named magnifin, contains phospholipase-like activity and induces platelet aggregation. The cDNA encoding magnifin is cloned from the venom sac cDNA library of the wasp. The predicted protein was deduced from the cDNA with a sequence composed of 337 amino acid residues. Magnifin is very similar to other phospholipase A(1) (PLA(1)), especially to other wasp allergen PLA(1). Magnifin can activate platelet aggregation and induce thrombosis in vivo. The current results proved that PLA(1) in wasp venom could be contributable to aortic thrombosis after massive wasp stings. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 Angstrom resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be crystallized and will provide further insights into the conformational significance of mastoparan toxins with respect to their potency and activity in G-protein regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insects of the order Hymenoptera ( bees, wasps, and ants) are classified in two groups, based on their life history: social and solitary. The venoms of the social Hymenoptera evolved to be used as defensive tools to protect the colonies of these insects from the attacks of predators. Generally they do not cause lethal effects but cause mainly inflammatory and/or immunological reactions in the victims of their stings. However, sometimes it is also possible to observe the occurrence of systemic effects like respiratory and/or kidney failure. Meanwhile, the venoms of solitary Hymenoptera evolved mainly to cause paralysis of the preys in order to permit egg laying on/within the prey's body; thus, some components of these venoms cause permanent/transient paralysis in the preys, while other components seem to act preventing infections of the food and future progenies. The peptide components of venoms from Hymenoptera are spread over the molar mass range of 1400 to 7000 da and together comprise up to 70% of the weight of freeze-dried venoms. Most of these toxins are linear polycationic amphipatic peptides with a high content of alpha-helices in their secondary structures. These peptides generally account for cell lysis, hemolysis, antibiosis, and sometimes promote the delivery of cellular activators/mediators through interaction with the G-protein receptor, and perhaps some of them are even immunogenic components. In addition to these peptides, the Hymenopteran venoms also may contain a few neurotoxins that target Na+ and/or Ca+2 channels or even the nicotinic ACh receptor. This review summarizes current knowledge of the biologically active Hymenoptera venoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study, we showed that the Polybia paulista wasp venom causes strong myonecrosis. This study was undertaken to characterize the myotoxic potency of mastoparan (Polybia-MPII) isolated from venom (0.25 mu g/mu l) and injected in the tibial anterior (TA) muscle (i.m.) of Balb/c mice. The time course of the changes was followed at muscle degenerative (3 and 24 h) and regenerative (3, 7, and 21 days) periods (n = 6) after injection and compared to matched controls by calculation of the percentage of cross-sectional area affected and determination of creatine kinase (CK) activity (n = 10). The results showed that although NIP was strongly myotoxic, its capacity for regeneration was maintained high. Since the extent of tissue damage was not correlated with the CK serum levels, which remained very low, we raised the hypothesis that the enzyme underwent denaturation by the peptide. Evidence suggested that MP induced the death of TA fibers by necrosis and apoptosis and had the sarcolemma as its primordial target. Given its amphiphilic polycationic nature and based on the vast spectrum of functions attributed to the peptide, we suggest that MP interaction with cell membrane impaired the phosphorylation of dystrophin essential for sarcolemma mechanical stability, and disturbed Ca2+ mobilization with obvious implications on sarcoplasmic reticulum and mitochondrial functioning. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.