113 resultados para Warehouses


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sistemas de tomada de decisão baseados em Data Warehouse (DW) estão sendo cada dia mais utilizados por grandes empresas e organizações. O modelo multidimensional de organização dos dados utilizado por estes sistemas, juntamente com as técnicas de processamento analítico on-line (OLAP), permitem análises complexas sobre o histórico dos negócios através de uma simples e intuitiva interface de consulta. Apesar dos DWs armazenarem dados históricos por natureza, as estruturas de organização e classificação destes dados, chamadas de dimensões, não possuem a rigor uma representação temporal, refletindo somente a estrutura corrente. Para um sistema destinado à análise de dados, a falta do histórico das dimensões impossibilita consultas sobre o ambiente real de contextualização dos dados passados. Além disso, as alterações dos esquemas multidimensionais precisam ser assistidas e gerenciadas por um modelo de evolução, de forma a garantir a consistência e integridade do modelo multidimensional sem a perda de informações relevantes. Neste trabalho são apresentadas dezessete operações de alteração de esquema e sete operações de alteração de instâncias para modelos multidimensionais de DW. Um modelo de versões, baseado na associação de intervalos de validade aos esquemas e instâncias, é proposto para o gerenciamento dessas operações. Todo o histórico de definições e de dados do DW é mantido por esse modelo, permitindo análises completas dos dados passados e da evolução do DW. Além de suportar consultas históricas sobre as definições e as instâncias do DW, o modelo também permite a manutenção de mais de um esquema ativo simultaneamente. Isto é, dois ou mais esquemas podem continuar a ter seus dados atualizados periodicamente, permitindo assim que as aplicações possam consultar dados recentes utilizando diferentes versões de esquema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"June 26, 1917."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes the Act and rules and regulations relating to the Act.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caption title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Issued June 1949."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach for organizing the information in the data warehouses is presented in the paper. The possibilities of the numbered information spaces for building data warehouses are discussed. An application is outlined in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of building Data Warehouses (DW) is well known with well defined stages but at the same time, mostly carried out manually by IT people in conjunction with business people. Web Warehouses (WW) are DW whose data sources are taken from the web. We define a flexible WW, which can be configured accordingly to different domains, through the selection of the web sources and the definition of data processing characteristics. A Business Process Management (BPM) System allows modeling and executing Business Processes (BPs) providing support for the automation of processes. To support the process of building flexible WW we propose a two BPs level: a configuration process to support the selection of web sources and the definition of schemas and mappings, and a feeding process which takes the defined configuration and loads the data into the WW. In this paper we present a proof of concept of both processes, with focus on the configuration process and the defined data.