1000 resultados para WRF model
Resumo:
The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5–Yonsei University–Noah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.
Resumo:
A new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0 C and 20 C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Resumo:
Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region
Resumo:
Simulating surface wind over complex terrain is a challenge in regional climate modelling. Therefore, this study aims at identifying a set-up of the Weather Research and Forecasting Model (WRF) model that minimises system- atic errors of surface winds in hindcast simulations. Major factors of the model configuration are tested to find a suitable set-up: the horizontal resolution, the planetary boundary layer (PBL) parameterisation scheme and the way the WRF is nested to the driving data set. Hence, a number of sensitivity simulations at a spatial resolution of 2 km are carried out and compared to observations. Given the importance of wind storms, the analysis is based on case studies of 24 historical wind storms that caused great economic damage in Switzerland. Each of these events is downscaled using eight different model set-ups, but sharing the same driving data set. The results show that the lack of representation of the unresolved topography leads to a general overestimation of wind speed in WRF. However, this bias can be substantially reduced by using a PBL scheme that explicitly considers the effects of non-resolved topography, which also improves the spatial structure of wind speed over Switzerland. The wind direction, although generally well reproduced, is not very sensitive to the PBL scheme. Further sensitivity tests include four types of nesting methods: nesting only at the boundaries of the outermost domain, analysis nudging, spectral nudging, and the so-called re-forecast method, where the simulation is frequently restarted. These simulations show that restricting the freedom of the model to develop large-scale disturbances slightly increases the temporal agreement with the observations, at the same time that it further reduces the overestimation of wind speed, especially for maximum wind peaks. The model performance is also evaluated in the outermost domains, where the resolution is coarser. The results demonstrate the important role of horizontal resolution, where the step from 6 to 2 km significantly improves model performance. In summary, the combination of a grid size of 2 km, the non-local PBL scheme modified to explicitly account for non-resolved orography, as well as analysis or spectral nudging, is a superior combination when dynamical downscaling is aimed at reproducing real wind fields.
Resumo:
The microwave radiometer TROWARA measures integrated water vapour (IWV) and integrated cloud liquid water (ILW) at Bern since 1994 with a time resolution of 7 s. In this study, we compare TROWARA measurements with a simulation of summer 2012 in Switzerland performed with the Weather Research and Forecasting (WRF) model. It is found that the WRF model agrees very well with TROWARA’s IWV variations with a mean bias of only 0.7 mm. The ILW distribution of the WRF model, although similar in shape to TROWARA’s distribution, overestimates the fraction of clear sky periods (83% compared to 60%).
Resumo:
This study aims to assess the performance or multi-layer canopy parameterizations implemented in the mesoscale WRF model in order to understand their potential contribution to improve the description of energy fluxes and wind fields in the Madrid city. It was found that the Building Energy Model (BEP+BEM) parameterization yielded better results than the bulk standard scheme implemented in the Noah LSM, but very close to those of the Building Energy Parameterization (BEP). The later was deemed as the best option since data requirements and CPU time were smaller. Two annual runs were made to feed the CMAQ chemical-transport model to assess the impact of this feature in routinely air quality modelling activities.
Resumo:
The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.
Resumo:
For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society
Resumo:
This study examines how different microphysical parameterization schemes influence orographically induced precipitation and the distributions of hydrometeors and water vapour for midlatitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m−2 in the downwelling shortwave radiation and up to 33 W m−2 in the downwelling longwave radiation.
Resumo:
It is commonly understood that the observed decline in precipitation in South-West Australia during the 20th century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation and anthropogenic aerosol emissions - all of which are effective on different spatial and temporal scales. This contribution focusses on the role of rapidly rising aerosol emissions from anthropogenic sources in South-West Australia around 1970. An analysis of historical longterm rainfall data of the Bureau of Meteorology shows that South-West Australia as a whole experienced a gradual decline in precipitation over the 20th century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modelling experiments at a convection-resolving resolution of 3.3km using the Weather and Research Forecasting (WRF) model version 3.6.1 with the aerosol-aware Thompson-Eidhammer microphysics scheme are conducted for the period 1970-1974. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2-9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater South-West Australia and for the sudden drop observed in areas along the West Coast in the 1970s: changing atmospheric circulations, deforestation and anthropogenic aerosol emissions.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.
Resumo:
El modelo de investigación y pronóstico climático (WRF) es un sistema completamente funcional de modelado que permite realizar investigación atmosférica y predicción meteorológica. WRF fue desarrollado con énfasis en la eficiencia, portabilidad, facilidad de mantenimiento, escalabilidad y productividad, lo que ha permitido que sea implementado con éxito en una amplia variedad de equipos HPC. Por esta razón, el tamaño de los problemas a los que WRF da soporte ha incrementado, por lo que el entendimiento de la dependencia del WRF con los diversos elementos de clúster, como la CPU, interconexiones y librerías, son cruciales para permitir predicciones eficientes y de alta productividad. En este contexto, el presente manuscrito estudia la escalabilidad de WRF en un equipo HPC, tomando en consideración tres parámetros: número de CPUs y nodos, comunicaciones y librerías. Para esto, dos benchmarks son llevados a cabo sobre un clúster de alto rendimiento dotado de una red GigaEthernet, los cuales permiten establecer la relación entre escalabilidad y los tres parámetros estudiados, y particularmente demuestran la sensibilidad del WRF a la comunicación inter-nodo. Dicho factor es esencial para mantener la escalabilidad y el aumento de la productividad al añadir nodos en el clúster.