881 resultados para WOOD-USING INDUSTRY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistics presented in Australia Council reports such as Don’t Give Up Your Day Job (2003), and Artswork: A Report On Australians Working in the Arts 1 and 2 (1997, 2005), and in other studies on destinations for Performing Arts graduates, demonstrate the diversity of post-graduation pathways for our students, the prevalence of protean careers, and the challenges in developing a sense of professional identity in a context where a portfolio of work across performance making, producing, administration and teaching can make it difficult for young artists to establish career status and capital in conventional terms (cf. Dawn Bennett, “Academy and the Real World: Developing Realistic Notions of Career in the Performing Arts”, Arts & Humanities in Higher Education, 8.3, 2009). In this panel, academics from around Australia will consider the ways in which Drama, Theatre and Performance Studies as a discipline is deploying a variety of practical, professional and work-integrated teaching and learning activities – including performance-making projects, industry projects, industry placements and student-initiated projects – to connect students with the networks, industries and professional pathways that will support their progression into their career. The panellists include Bree Hadley (Queensland University of Technology), Meredith Rogers (La Trobe University), Janys Hayes (Woolongong University) and Teresa Izzard (Curtin University). The panelists will present insights into the activities they have found successful, and address a range of questions, including: How do we introduce students to performance-making and / or producing models they will be able to employ in their future practice, particularly in light of the increasingly limited funds, time and resources available to support students’ participation in full-scale productions under the stewardship of professional artists?; How and when do we introduce students to industry networks?; How do we cater for graduates who will work as performers, writers, directors or administrators in the non-subsidised sector, the subsidised sector, community arts and education?; How do we category cater for graduates who will go on to pursue their work in a practice-as-research context in a Higher Degree?; How do we assist graduates in developing a professional identity? How do we assist graduates in developing physical, professional and personal resilience?; How do we retain our connections with graduates as part of their life-long learning?; Do practices and processes need to differ for city or regionally based / theoretically or practically based degree programs?; How do our teaching and learning activities align with emergent policy and industrial frameworks such as the shift to the “Producer Model” in Performing Arts funding, or the new mentorship, project, production and enterprise development opportunities under the Australia Council for the Arts’ new Opportunities for Young and Emerging Artists policy framework?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basis for this study was in poor attractiveness of the wood products industry among young people as a field to study and work in. The purpose was to produce new information of how to improve the relationship between young people and the wood products industry in order to better attract young people with different relational orientation. A survey was conducted among students of comprehensive schools and students of wood industry at vocational schools selected by systematic cluster sampling. The final sample consisted of 613 students. The study combined the theories and concepts of relationships, communication and trust of several disciplines. In addition, it applied theories of relationship marketing, stakeholders, publics, involvement and concepts of reputation and values. It studied the central relational elements in the form of antecedents, relationship state and its consequences. The study examined, how young people with different background and level of interest perceive wood industry as a field to study and work in from relational point of view, what are the central deficiencies in perceived relational elements and what are the public relations activities enhancing the relationship between wood industry and young people with less and high interest in the sector. The results indicate poor visibility of the wood industry among young people: unfamiliarity with the industry and unawareness of the opportunities to study in the field. It appeared that instead of increasing only information sharing, interactive communication in different forms is needed. The study also suggests that behaviors of the industry sector advancing perceived trustworthiness are of crucial importance. Moreover, the wood industry needs to pay attention to its behaviors and communication also among other stakeholder groups, especially the media, as reputation plays an important role in building up trust and satisfaction between young people and the sector. Finally, the less and highly interested young people were found to assess the relationship partly through different relational elements. In order to develop the relationship with highly interested young people they should be regarded clearly as future employees of the wood industry through activities affirming that they are desired and valued employees in the sector. Further, openness of information disclosure, whether concerning current situation or future prospects, seems to increase credibility and attractiveness of the wood industry. Highly interested young people were also found to appreciate socially responsible activities. The less interested young people seem to be insecure about the reliability of the wood industry as an employer, as well as, its ability and interest to invest in young people s skills. In addition,involvement in issues relevant for young people was found crucial in enhancing the relationship with the less interested young people.The conclusions of the study provide tools for enhancing the attractiveness of the wood industry among young people not only to the industry itself, but also to its advocates, teachers and student counselors of comprehensive and vocational schools, authorities and policy makers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain rate significantly affects the strength of a material. The Split-Hopkinson Pressure Bar (SHPB) was initially used to study the effects of high strain rate (~103 1/s) testing of metals. Later modifications to the original technique allowed for the study of brittle materials such as ceramics, concrete, and rock. While material properties of wood for static and creep strain rates are readily available, data on the dynamic properties of wood are sparse. Previous work using the SHPB technique with wood has been limited in scope to variability of only a few conditions and tests of the applicability of the SHPB theory on wood have not been performed. Tests were conducted using a large diameter (3.0 inch (75 mm)) SHPB. The strain rate and total strain applied to a specimen are dependent on the striker bar length and velocity at impact. Pulse shapers are used to further modify the strain rate and change the shape of the strain pulse. A series of tests were used to determine test conditions necessary to produce a strain rate, total strain, and pulse shape appropriate for testing wood specimens. Hard maple, consisting of sugar maple (Acer saccharum) and black maple (Acer nigrum), and eastern white pine (Pinus strobus) specimens were used to represent a dense hardwood and a low-density soft wood. Specimens were machined to diameters of 2.5 and 3.0 inches and an assortment of lengths were tested to determine the appropriate specimen dimensions. Longitudinal specimens of 1.5 inch length and radial and tangential specimens of 0.5 inch length were found to be most applicable to SHPB testing. Stress/strain curves were generated from the SHPB data and validated with 6061-T6 aluminum and wood specimens. Stress was indirectly corroborated with gaged aluminum specimens. Specimen strain was assessed with strain gages, digital image analysis, and measurement of residual strain to confirm the strain calculated from SHPB data. The SHPB was found to be a useful tool in accurately assessing the material properties of wood under high strain rates (70 to 340 1/s) and short load durations (70 to 150 μs to compressive failure).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Item 231-B-1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Companies operating in the wood processing industry need to increase their productivity by implementing automation technologies in their production systems. An increasing global competition and rising raw material prizes challenge their competitiveness. Yet, too extensive automation brings risks such as a deterioration in situation awareness and operator deskilling. The concept of Levels of Automation is generally seen as means to achieve a balanced task allocation between the operators’ skills and competences and the need for automation technology relieving the humans from repetitive or hazardous work activities. The aim of this thesis was to examine to what extent existing methods for assessing Levels of Automation in production processes are applicable in the wood processing industry when focusing on an improved competitiveness of production systems. This was done by answering the following research questions (RQ): RQ1: What method is most appropriate to be applied with measuring Levels of Automation in the wood processing industry? RQ2: How can the measurement of Levels of Automation contribute to an improved competitiveness of the wood processing industry’s production processes? Literature reviews were used to identify the main characteristics of the wood processing industry affecting its automation potential and appropriate assessment methods for Levels of Automation in order to answer RQ1. When selecting the most suitable method, factors like the relevance to the target industry, application complexity or operational level the method is penetrating were important. The DYNAMO++ method, which covers both a rather quantitative technical-physical and a more qualitative social-cognitive dimension, was seen as most appropriate when taking into account these factors. To answer RQ 2, a case study was undertaken at a major Swedish manufacturer of interior wood products to point out paths how the measurement of Levels of Automation contributes to an improved competitiveness of the wood processing industry. The focus was on the task level on shop floor and concrete improvement suggestions were elaborated after applying the measurement method for Levels of Automation. Main aspects considered for generalization were enhancements regarding ergonomics in process design and cognitive support tools for shop-floor personnel through task standardization. Furthermore, difficulties regarding the automation of grading and sorting processes due to the heterogeneous material properties of wood argue for a suitable arrangement of human intervention options in terms of work task allocation.  The application of a modified version of DYNAMO++ reveals its pros and cons during a case study which covers a high operator involvement in the improvement process and the distinct predisposition of DYNAMO++ to be applied in an assembly system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye bibliografía.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research analyzes product quality from a customer perspective in the case of the wood products industry. Of specific interest is to understand better how environmental quality is perceived from a customer perspective. The empirical material used comprises four data-sets from Finland, Germany and the UK, collected during 1992 2004. The methods consist of a set of quantitative statistical analyses. The results indicate that perceived quality from a customer perspective can be presented using a multidimensional and hierarchical construct with tangible and intangible dimensions, that is common to different markets and products. This applies in the case of wood products but also more generally at least for some other construction materials. For wood products, tangible product quality has two main sub-dimensions: technical quality and appearance. For product intangibles, a few main quality dimensions seem be detectable: Quality of intangibles related to the physical product, such as environmental issues and product-related information, supplier-related characteristics, and service and sales personnel behavior. Environmental quality and information are often perceived as being inter-related. Technical performance and appearance are the most important considerations for customers in the case of wood products. Organizational customers in particular also clearly consider certain intangible quality dimensions to be important, such as service and supplier reliability. The high technical quality may be considered as a license to operate , but product appearance and intangible quality provide potential for differentiation for attracting certain market segments. Intangible quality issues are those where Nordic suppliers underperform in comparison to their Central-European competitors on the important German markets. Environmental quality may not have been used to its full extent to attract customers. One possibility is to increase the availability of the environment-related information, or to develop environment-related product characteristics to also provide some individual benefits. Information technology provides clear potential to facilitate information-based quality improvements, which was clearly recognized by Finnish forest industry already in the early 1990s. The results indeed indicate that wood products markets are segmented with regard to quality demands

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study analyzed the relationship between the CO2 emissions of different industries and economic growth in OECD countries from 1970 to 2005. We tested an environmental Kuznets curve (EKC) hypothesis and found that total CO2 emissions from nine industries show an N-shaped trend instead of an inverted U or monotonic increasing trend with increasing income. The EKC hypothesis for sector-level CO2 emissions was supported in the (1) paper, pulp, and printing industry; (2) wood and wood products industry; and (3) construction industry. We also found that emissions from coal and oil increase with economic growth in the steel and construction industries. In addition, the non-metallic minerals, machinery, and transport equipment industries tend to have increased emissions from oil and electricity with economic growth. Finally, the EKC turning point and the relationship between GDP per capita and sectoral CO2 emissions differ among industries according to the fuel type used. Therefore, environmental policies for CO2 reduction must consider these differences in industrial characteristics. © 2013 Elsevier Ltd.