5 resultados para WLDA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a combination of source-normalized weighted linear discriminant analysis (SN-WLDA) and short utterance variance (SUV) PLDA modelling to improve the short utterance PLDA speaker verification. As short-length utterance i-vectors vary with the speaker, session variations and phonetic content of the utterance (utterance variation), a combined approach of SN-WLDA projection and SUV PLDA modelling is used to compensate the session and utterance variations. Experimental studies have found that a combination of SN-WLDA and SUV PLDA modelling approach shows an improvement over baseline system (WCCN[LDA]-projected Gaussian PLDA (GPLDA)) as this approach effectively compensates the session and utterance variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the use of the dimensionality-reduction techniques weighted linear discriminant analysis (WLDA), and weighted median fisher discriminant analysis (WMFD), before probabilistic linear discriminant analysis (PLDA) modeling for the purpose of improving speaker verification performance in the presence of high inter-session variability. Recently it was shown that WLDA techniques can provide improvement over traditional linear discriminant analysis (LDA) for channel compensation in i-vector based speaker verification systems. We show in this paper that the speaker discriminative information that is available in the distance between pair of speakers clustered in the development i-vector space can also be exploited in heavy-tailed PLDA modeling by using the weighted discriminant approaches prior to PLDA modeling. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that WLDA and WMFD projections before PLDA modeling can provide an improved approach when compared to uncompensated PLDA modeling for i-vector based speaker verification systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.