940 resultados para WIND-WIND COLLISION
Resumo:
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda 4686 emission line (L similar to 310 L-circle dot) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda 4686 light curves. After a short-lived minimum, He II lambda 4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.
Resumo:
Nous présentons les résultats de trois campagnes d'observation d'un mois chacune dans le cadre de l'étude de la collision des vents dans les systèmes binaires Wolf-Rayet + OB. Ce travail se concentre sur l'étude des objets de l'hémisphère sud n'ayant jamais encore fait l'objet d'études poussées dans ce contexte. À cela, nous avons ajouté l'objet archétype pour ce type de systèmes : WR 140 (WC7pd + O5.5fc) qui a effectué son dernier passage périastre en janvier 2009. Les deux premières campagnes (spectroscopiques), ont permis une mise à jour des éléments orbitaux ainsi qu'une estimation de la géométrie de la zone de collision des vents et d'autres paramètres fondamentaux des étoiles pour 6 systèmes binaires : WR 12 (WN8h), 21 (WN5o+O7V), 30 (WC6+O7.5V), 31 (WN4o+O8), 47 (WN6o+O5) et 140. Une période non-orbitale courte (probablement reliée à la rotation) a également été mesurée pour un des objets : WR 69 (WC9d+OB), avec une période orbitale bien plus grande. La troisième campagne (photométrique) a révélé une variabilité étonnamment faible dans un échantillon de 20 étoiles WC8/9. Cela supporte l'idée que les pulsations ne sont pas courantes dans ce type d'étoiles et qu'il est peu probable que celles-ci soient le mécanisme dominant de formation de poussière, suggérant, par défaut, le rôle prédominant de la collision des vents.
Resumo:
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X/L bol). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).
Resumo:
Ce mémoire s’intéresse au système binaire massif CV Serpentis, composé d’une Wolf- Rayet riche en carbone et d’une étoile de la séquence principale, de type spectral O (WC8d + O8-9IV). D’abord, certains phénomènes affectant les étoiles massives sont mentionnés, de leur passage sur la séquence principale à leur mort (supernova). Au cours du premier cha- pitre, un rappel est fait concernant certaines bases de l’astrophysique stellaire observa- tionnelle (diagramme Hertzsprung-Russell, phases évolutives, etc...). Au chapitre suivant, un des aspects les plus importants de la vie des étoiles massives est abordé : la perte de masse sous forme de vents stellaires. Un historique de la découverte des vents ouvre le chapitre, suivi des fondements théoriques permettant d’expliquer ce phénomène. Ensuite, différents aspects propres aux vents stellaires sont présentés. Au troisième chapitre, un historique détaillé de CV Ser est présenté en guise d’introduc- tion à cet objet singulier. Ses principales caractéristiques connues y sont mentionnées. Finalement, le cœur de ce mémoire se retrouve au chapitre 4. Des courbes de lumière ultra précises du satellite MOST (2009 et 2010) montrent une variation apparente du taux de perte de masse de la WR de l’ordre de 62% sur une période orbitale de 29.701 jours. L’analyse des résidus permet de trouver une signature suggérant la présence de régions d’interaction en corotation (en anglais corotating interaction regions, ou CIR) dans le vent WR. Une nouvelle solution orbitale est présentée ainsi que les paramètres de la région de collision des vents et les types spectraux sont confirmés.
Resumo:
A full description of the 5.5-yr low excitation events in. Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e. g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in Fe II lambda 6455 and He I lambda 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
During the past decade, several observational and theoretical works have provided evidence of the binary nature of eta Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, eta Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of eta Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind-wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of eta Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of i similar to 60 degrees +/- 10 degrees, and i* similar to 35 degrees +/- 10 degrees with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as similar to -40 degrees, showing that periastron passage occurs shortly after conjunction.
Resumo:
Goldsmiths'-Kress no. 16657.1.
Resumo:
Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.
Resumo:
In recent years, the eastern foothills of the Rocky Mountains in northeastern British Columbia have received interest as a site of industrial wind energy development but, simultaneously, have been the subject of concern about wind development coinciding with a known migratory corridor of Golden Eagles (Aquila chrysaetos). We tracked and quantified eagle flights that crossed or followed ridgelines slated for one such wind development. We found that hourly passage rates during fall migration peaked at midday and increased by 17% with each 1 km/h increase in wind speed and by 11% with each 1°C increase in temperature. The propensity to cross the ridge tops where turbines would be situated differed between age classes, with juvenile eagles almost twice as likely to traverse the ridge-top area as adults or subadults. During fall migration, Golden Eagles were more likely to cross ridges at turbine heights (risk zone, < 150 m above ground) under headwinds or tailwinds, but this likelihood decreased with increasing temperature. Conversely, during spring migration, eagles were more likely to move within the ridge-top area under eastern crosswinds. Identifying Golden Eagle flight routes and altitudes with respect to major weather systems and local topography in the Rockies may help identify scenarios in which the potential for collisions is greatest at this and other installations.
Resumo:
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, similar to 20 per cent are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analysed the He II lambda 4686 angstrom + C IV lambda 4658 angstrom blended lines of WR 30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6-d period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.
Resumo:
Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.