954 resultados para WILSON LOOPS
Resumo:
We discuss the relation between correlation functions of twist-two large spin operators and expectation values of Wilson loops along light-like trajectories. After presenting some heuristic field theoretical arguments suggesting this relation, we compute the divergent part of the correlator in the limit of large 't Hooft coupling and large spins, using a semi-classical world-sheet which asymptotically looks like a GKP rotating string. We show this diverges as expected from the expectation value of a null Wilson loop, namely, as (ln mu(-2))(2). mu being a cut-off of the theory. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.
Resumo:
We show that tree level superstring theories on certain supersymmetric backgrounds admit a symmetry which we call "fermionic T-duality". This is a non-local redefinition of the fermionic worldsheet fields similar to the redefinition we perform on bosonic variables when we do an ordinary T-duality. This duality maps a supersymmetric background to another supersymmetric background with different RR fields and a different dilaton. We show that a certain combination of bosonic and fermionic T-dualities maps the full superstring theory on AdS(5) x S-5 back to itself in such a way that gluon scattering amplitudes in the original theory map to something very close to Wilson loops in the dual theory. This duality maps the "dual superconformal symmetry" of the original theory to the ordinary superconformal symmetry of the dual model. This explains the dual superconformal invariance of planar scattering amplitudes of N = 4 super Yang Mills and also sheds some light on the connection between amplitudes and Wilson loops. In the appendix, we propose a simple prescription for open superstring MHV tree amplitudes in a flat background.
Resumo:
We calculate the string tension and 0++ and 2++ glueball masses in pure gauge QCD using an improved lattice action. We compare various smearing methods, and find that the best glueball signal is obtained using smeared Wilson loops of a size of about 0.5 fm. Our results for mass ratios m0++/√σ=3.5(3) and m2++/m0++=1.6(2) are consistent with those computed with the simple plaquette action.
Resumo:
Motivated by the recent proposal for the S-matrix in AdS(3) x S-3 with mixed three form fluxes, we study classical folded string spinning in AdS(3) with both Ramond and Neveu-Schwarz three form fluxes. We solve the equations of motion of these strings and obtain their dispersion relation to the leading order in the Neveu-Schwarz flux b. We show that dispersion relation for the spinning strings with large spin S acquires a term given by -root lambda/2 pi b(2) log(2) S in addition to the usual root lambda/pi log S term where root lambda is proportional to the square of the radius of AdS(3). Using SO(2, 2) transformations and re-parmetrizations we show that these spinning strings can be related to light like Wilson loops in AdS(3) with Neveu-Schwarz flux b. We observe that the logarithmic divergence in the area of the light like Wilson loop is also deformed by precisely the same coefficient of the b(2) log(2) S term in the dispersion relation of the spinning string. This result indicates that the coefficient of b(2) log(2) S has a property similar to the coefficient of the log S term, known as cusp-anomalous dimension, and can possibly be determined to all orders in the coupling lambda using the recent proposal for the S-matrix.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider a two-parameter family of Z(2) gauge theories on a lattice discretization T(M) of a three-manifold M and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Gamma. We show that there is a region Gamma(0) subset of Gamma where the partition function and the expectation value h < W-R(gamma)> i of the Wilson loop can be exactly computed. Depending on the point of Gamma(0), the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of M. The Wilson loop on the other hand, does not depend on the topology of gamma. However, for a subset of Gamma(0), < W-R(gamma)> depends on the size of gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.
Resumo:
We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1 TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.
Resumo:
The invited presentation was delivered at Queensland Department of Main Roads, Brisbane Australia, 17th June 2013
Resumo:
This timely and thorough book seeks to provide evidence-based assessments of ways in which spatial planning may develop and deliver new strategies for addressing both the causes and impacts of climate change. The authors state that much of the analysis is informed by experiences and learning from their own involvements with climate change projects. The book aims to be relevant to a wide audience and nominates its intended readership to include planning practitioners, scholars, post-graduate students of built environment courses, politicians and the ‘interested’ public. In this regard, the authors skilfully deliver with a comprehensive and accessible dissemination of the nexus between spatial planning and climate change...
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.