827 resultados para WILDLIFE RECOVERY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultimate goal of wildlife recovery is abundance growth of a species, though it must also involve the reestablishment of the species’ ecological role within ecosystems frequently modified by humans. Reestablishment and subsequent recovery may depend on the species’ degree of adaptive behavior as well as the duration of their functional absence and the extent of ecosystem alteration. In cases of long extirpations or extensive alteration, successful reestablishment may entail adjusting foraging behavior, targeting new prey species, and encountering unfamiliar predatory or competitive regimes. Recovering species must also increasingly tolerate heightened anthropogenic presence, particularly within densely inhabited coastal zones. In recent decades, gray seals (Halichoerus grypus) recovered from exploitation, depletion, and partial extirpation in the Northwest Atlantic. On Cape Cod, MA, USA, gray seals have reestablished growing breeding colonies and seasonally interact with migratory white sharks (Carcarodon carcharias). Though well-studied in portions of their range due to concerns over piscivorous impacts on valuable groundfish, there are broad knowledge gaps regarding their ecological role to US marine ecosystems. Furthermore, there are few studies that explicitly analyze gray seal behavior under direct risk of documented shark predation.

In this dissertation, I apply a behavioral and movement ecology approach to telemetry data to understand gray seal abundance and activity patterns along the coast of Cape Cod. This coastal focus complements extensive research documenting and describing offshore movement and foraging behavior and allows me to address questions about movement decisions and risk allocation. Using beach counts of seals visible in satellite imagery, I estimate the total regional abundance of gray seals using correction factors from haul out behavior and demonstrate a sizeable prey base of gray seals locally. Analyzing intra-annual space use patterns, I document small, concentrated home ranges utilizing nearshore habitats that rapidly expand with shifting activity budgets to target disperse offshore habitats following seasonal declines in white sharks. During the season of dense shark presence, seals conducted abbreviated nocturnal foraging trips structured temporally around divergent use of crepuscular periods. The timing of coastal behavior with different levels of twilight indicate risk allocation patterns with diel cycles of empirical white shark activity. The emergence of risk allocation to explain unique behavioral and spatial patterns observed in these gray seals points to the importance of the restored predator-prey dynamic in gray seal behavior along Cape Cod.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wyoming has multiple resources including non-renewable sources, renewable sources, as well as its wildlife. Two of these resources are uranium and wind. Currently wind farms in Wyoming are generating approximately 5 million MW of power, with less of an impact on wildlife than in-situ facilities. In-situ facilities in 2007 produced an estimated 32 million MW of power from uranium, with a greater impact to wildlife than wind farms. Both resources have a great potential in Wyoming and both will have an impact on wildlife. Currently wind farms show less of an impact on wildlife but they are also producing fewer megawatts. The potential for wind-generated energy over the next century shows wildlife impacts will be greater than impacts from ISR facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alagoas Curassow Mitu mitu is considered extinct in the wild. Since 1979, two females and a male caught in the wild have bred successfully in captivity, and, in 1990, hybridizations between M. mitu and Razor-billed Mitu M. tuberosum were performed. By June 2008, there were around 130 living birds in two different aviaries. We sequenced two regions of the mitochondrial DNA of both captive stocks of Alagoas Curassows. We unequivocally identified hybrids that have haplotype typical of M. tuberosum. However, unless the original studbook can be recovered there is no confident way to discriminate ""pure"" M. mitu birds for breeding and reintroduction purposes. Allied with morphological data gathered in an independent study, we suggest that conservation actions need to focus on specimens with diagnostic phenotypic characters of M. mitu, and avoid birds with mitochondria, genetic contribution of M. tuberosum. Although we have detected low levels of genetic variability among captive birds, the steady increase of the captive population suggests that inbreeding depression and hybridization are not a reproductive hindrance. Reintroduction of some of these potential hybrid birds in the original area of occurrence of the Alagoas Curassow may be the only hope to fill in the ecological niche left vacant. An educational program involving local communities to conserve future reintroduction of curassows and their restored habitat is highly recommended. Accepted 12 November 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovery plans identify reasonable actions which are believed to be required to recover and/or protect endangered species. Plans are prepared by the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (FWS) and sometimes with the assistance of recovery teams, contractors, State agencies, and others. This plan was prepared by Randall R. Reeves, Phillip J. Clapham, Robert L. Brownell, Jr., and Gregory K. Silber for NMFS. Recovery plans do not necessarily represent the views nor the official positions or approvals of any individuals or agencies, other than those of NMFS, and they represent the views of NMFS only after they have been approved by the Assistant Administrator for Fisheries. Objectives will only be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks described in the plan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska’s North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of disturbance from winter seismic vehicles in the Arctic predicted short-term and mostly aesthetic impacts, but we found that severe impacts to tundra vegetation persisted for two decades after disturbance under some conditions. We recommend management approaches that should be used to prevent persistent tundra damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipping list no.: 92-0327-P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"River Otter Recovery Team Members: Robert Bluett, ... et al."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild animals have been kept as pets for centuries, in Brazil companionship is one of the main reasons why wild species are legally bred and traded. This paper is an attempt to call the attention for problems concerning the welfare of wild pets involved in the trading system in Brazil. Some issues presented are: a) the significant increase in the number of wildlife breeders and traders and the difficulties faced by of the Brazilian government in controlling this activity; b) the main welfare issues faced by breeders and owners of wild pets; and c) the destination of wild pets no longer wanted. Finally, some recommendations are made having the welfare of the animals as a priority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and g ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.