932 resultados para WHITE PORTLAND-CEMENT
Resumo:
Freshly-mixed and partially-cured ordinary Portland cement (OPC) pastes have been shown to exhibit good biological compatibility with a range of cells and tissue-types; particularly those associated with bone formation. Formulations based on OPC have been used as dental restoratives and are now being investigated for their potential use in orthopaedic repair. Despite the current clinical interest in OPCs, very little is known about their chemistry in the physiological environment. In this respect, research to investigate aspects of the interactions between a white Portland cement (WPC) paste and simulated body fluid (SBF) has been carried out in vitro. Exposure to SBF has been found to promote the precipitation of a layer of 'bone-like' hydroxyapatite on the surface of WPC paste which underpins its ability to integrate with living tissue. The dissolution of portlandite and formation of calcite were also observed on contact with SBF.
Resumo:
This study evaluated the influence of addition of 10% calcium chloride (CaCl(2)) on the setting time, solubility, disintegration, and pH of white MTA (WMTA) and white Portland cement (WPC). A test of the setting time was performed following the #57 ADA specifications and a test of the final setting time according to the ASTM. For the solubility tests disintegration and pH, Teflon rings were filled with the cements and weighed after setting. After 24 h in a desiccator, they were once again weighed. Thereafter, they were immersed in MiliQ water for 24 and 72 h and 7, 14, and 28 days, with maintenance in the desiccator and weighing between periods. The pH of water in which the rings were immersed was measured immediately after contact with them and in the other periods. The addition of CaCl(2) provided a significant reduction (50%) in the initial setting time of cements. The final setting time of WMTA was reduced in 35.5% and the final setting time of WPC in 68.5%. The WMTA with CaCl(2) absorbed water and gained weight with time, except for in the 24-h period. The addition of CaCl(2) to the WPC reduced its solubility. The addition of CaCl(2) increased the pH of WMTA in the immediate period and at 24 and 72 h and for WPC in the immediate period and at 24 h. The addition of CaCl(2) to WMTA and WPC reduced the setting times and solubility of both and increased the pH of cements in the initial periods. (J Endod 2009;35:550-554)
Resumo:
Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P <.05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. Copyright © 2012 American Association of Endodontists.
Resumo:
Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P < .05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. (J Endod 2012;38:394-397)
Resumo:
To evaluate the biocompatibility and the setting time of Portland cement clinker with or without 2% or 5% calcium sulfate and MTA-CPM. Twenty-four mice (Rattus norvegicus) received subcutaneously polyethylene tubes filled with Portland cement clinker with or without 2% or 5% calcium sulfate and MTA. After 15, 30 and 60 days of implantation, the animals were killed and specimens were prepared for microscopic analysis. For evaluation of the setting time, each material was analyzed using Gilmore needles weighing 113.5 g and 456.5 g, according to the ASTM specification Number C266-08 guideline. Data were analyzed by ANOVA and Tukey's test for setting time and Kruskal-Wallis and Dunn test for biocompatibility at 5% significance level. Histologic observation showed no statistically significant difference of biocompatibility (p>0.05) among the materials in the subcutaneous tissues. For the setting time, clinker without calcium sulfate showed the shortest initial and final setting times (6.18 s/21.48 s), followed by clinker with 2% calcium sulfate (9.22 s/25.33 s), clinker with 5% calcium sulfate (10.06 s/42.46 s) and MTA (15.01 s/42.46 s). All the tested materials showed biocompatibility and the calcium sulfate absence shortened the initial and final setting times of the white Portland cement clinker
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p<0.05). At 168 h, all materials showed similar pHs (p>0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.
Resumo:
The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p<0.05). At 168 h, all materials showed similar pHs (p>0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.
Resumo:
The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5X3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.
Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements
Resumo:
Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root end-filling materials. However, biocompatibility data concerning genotoxicity and cytotoxicity are needed for complete risk assessment of these compounds. In the present study, genotoxic and cytotoxic effects of MTA and Portland cements were evaluated in vitro using the alkaline single cell gel (comet) assay and trypan blue exclusion test, respectively, on mouse lymphoma cells. The results demonstrated that the single cell gel (comet) assay failed to detect DNA damage after a treatment of cells by MTA and Portland cements for concentrations up to 1000 mu g/ml. Similarly, results showed that none of the compounds tested were cytotoxic. Taken together, these results seem to indicate that MTA and Portland cements are not genotoxins and do not induce cellular death.
Resumo:
Objective. Recently, mineral trioxide aggregate (MTA) and Portland cement have been used in dentistry as root-end-filling materials. However, the reported results concerning the biocompatibility of these materials are inconsistent. The goal of this study was to examine the genotoxicity and cytotoxicity of MTA and Portland cements in vitro by the single-cell gel (comet) assay and trypan blue exclusion test.Study design. Chinese hamster ovary (CHO) cells were exposed to MTA and regular and white Portland cements at final concentration ranging from 1 to 1000 mu g/mL for 1 h at 37 degrees C.Results. All compounds tested did not show genotoxic effects in all concentrations evaluated. No significant differences (P > .05) in cytotoxicity were observed for all compounds tested.Conclusions. Taken together, our results suggest that MTA and Portland cements are not genotoxins and are not able to induce cellular death.
Resumo:
Objective: The aim of this study was to compare the microbial leakage of mineral trioxide aggregate (MTA), Portland cement (PC), Sealapex and zinc oxide-eugenol (ZOE) as root-end filling materials.Study design: An in vitro microbial leakage test (MLT) with a split chamber was used in this study. A mixture of facultative bacteria and one yeast (S. aureus + E. faecalis + P. aeruginosa + B. subtilis + C. albicans) was placed in the upper chamber and it could only reach the lower chamber containing Brain Heart Infusion broth by way of leakage through the root-end filling. Microbial leakage was observed daily for 60 days. Sixty maxillary anterior human teeth were randomly assigned to different groups - MTA and PC (gray and white), Sealapex + zinc oxide and ZOE, control groups and subgroups to evaluate the influence of EDTA for smear layer removal. These materials were further evaluated by an agar diffusion test (ADT) to verify their antimicrobial efficacy. Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney test.Results: In the MLT, Sealapex + zinc oxide and ZOE did not show evidence of microbial leakage over the 60-day experimental period. The other materials showed leakage from the 15th day. The presence of smear layer influenced microbial leakage. Microbial inhibition zones were not observed in all samples tested by ADT.Conclusion: Sealapex + zinc oxide and ZOE did not show microbial leakage over the experimental period, whereas it was verified within 15 to 45 days in MTA and Portland cement.
Resumo:
The aim of this study was to evaluate the antimicrobial activity of different root-end filling materials - Sealer 26, Sealapex with zinc oxide, zinc oxide and eugenol, white and gray Portland cement, white and gray MTA-Angelus, and gray Pro Root MTA - against six different microorganism strains. The agar diffusion method was used. A base layer was made using Müller-Hinton agar (MH) and wells were formed by removing the agar. The materials were placed in the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC10538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. Triphenyltetrazolium chloride 0.05% gel was added for optimization, and the zones of inhibition were measured. Data were subjected to the Kruskal-Wallis and Dunn tests at a 5% significance level. The results showed that all materials had antimicrobial activity against all the tested strains. Analysis of the efficacy of the materials against the microbial strains showed that Sealapex with zinc oxide, zinc oxide and eugenol and Sealer 26 created larger inhibition halos than the MTA-based and Portland cements (P < 0.05). On the basis of the methodology used, it may be concluded that all endodontic sealers, MTA-based and Portland cements evaluated in this study possess antimicrobial activity, particularly the endodontic sealers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)