977 resultados para WHEAT SEEDLINGS
Resumo:
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.
Resumo:
Water availability is a major limiting factor for wheat (Triticum aestivum L.) in rain-fed agricultural systems worldwide. Root architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root traits in wheat breeding programs has been largely limited due to the lack of suitable phenotyping methods. The aim of this research was to develop a low-cost high-throughput phenotyping method to facilitate selection for desirable root traits. We developed a method to assess ‘seminal root angle’ and ‘seminal root number’ in seedlings – two proxy traits associated to root architecture of mature wheat plants (1). The method involves measuring the angle between the first pair of seminal roots and the number of roots of wheat seedlings grown in transparent pots (Figure 1). Images captured at 5 to 10 days after sowing are analyzed to calculate seminal root angle and number. Performing this technique under “speed breeding” conditions (plants grown at a density of 600 plants / m2, under controlled temperature and constant light) allows the selection based on the desired root traits of up to 5 consecutive generations within 12 months. Alternatively, when focusing only on germplasm screening, up to 52 successive phenotypic assays can be conducted within 12 months. This approach has been shown to be highly reproducible, it requires little resource (time, space, and labour) and can be used to rapidly enrich breeding populations with desirable alleles for narrow root angle and a high number of seminal roots to indirectly target the selection of deeper root system with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with the climate model projections, especially in summer rainfall dominant regions including some Australian, Indian, South American and African cropping regions, where winter crops mainly rely on deep stored water.
Resumo:
Most modern wheat cultivars contain major dwarfing genes, but their effects on root growth are unclear. Near-isogenic lines (NILs) containing Rht-B1b, Rht-D1b, Rht-B1c, Rht8c, Rht-D1c, and Rht12 were used to characterize the effects of semi-dwarfing and dwarfing alleles on root growth of 'Mercia' and 'Maris Widgeon' wheat cultivars. Wheat seedlings were grown in gel chambers, soil-filled columns, and in the field. Roots were extracted and length and dry mass measured. No significant differences in root length were found between semi-dwarfing lines and the control lines in any experiment, nor was there a significant difference between the root lengths of the two cultivars grown in the field. Total root length of the dwarf lines (Rht-B1c, Rht-D1c, and Rht12) was significantly different from that of the control although the effect was dependent on the experimental methodology; in gel chambers root length of dwarfing lines was increased by; 40% while in both soil media it was decreased (by 24-33%). Root dry mass was 22-30% of the total dry mass in the soil-filled column and field experiments. Root length increased proportionally with grain mass, which varied between NILs, so grain mass was a covariate for the analysis of variance. Although total root length was altered by dwarf lines, root architecture (average root diameter, lateral root: total root ratio) was not affected by reduced height alleles. A direct effect of dwarfing alleles on root growth during seedling establishment, rather than a secondary partitioning effect, was suggested by the present experiments.
Resumo:
• Background and Aims The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum ‘Arina’) plants were investigated. • Methods After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. • Key Results The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. • Conclusions The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.
Resumo:
Nitrous oxide (N2O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N2O flux was monitored simultaneously with photosynthetic CO2 and O2 exchanges from intact canopies of 12 wheat seedlings. The rates of N2O-N emitted ranged from <2 pmol⋅m−2⋅s−1 when NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} was the N source, to 25.6 ± 1.7 pmol⋅m−2⋅s−1 (mean ± SE, n = 13) when the N source was shifted to NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N2O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO2 assimilated to O2 evolved. 15N isotopic signatures on N2O emitted from leaves supported direct N2O production by plant NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilation and not N2O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N2O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N2O produced by leaves occurred during photoassimilation of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} in the chloroplast. Given the large quantities of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N2O during NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} photoassimilation could be an important global biogenic N2O source.
Resumo:
The necrotrophic fungal pathogen Fusarium pseudograminearum (F. pseudograminearum) causes crown rot disease (CR) in wheat. This host-pathogen interaction has not been studied previously at the molecular level. In this study. using real-time quantitative PCR, the expression of 26 selected wheat genes was examined 1, 2 and 4 days after inoculation of wheat seedlings of the CR susceptible cultivar Kennedy and the partially field-resistant cultivar Sunco. Reproducible induction of eight defence genes consisting of PR1.1, PR2 (beta,1-3 glucanase), PR3 (chitinase), PR4 (wheativin), PR5 (thaumatin-like protein). TaPERO (peroxidase), PR10 and TaGLP2a (germin-like) was observed. These genes were induced in both cultivars, however. some genes were induced more rapidly in Sunco than in Kennedy. MJ treatment also induced the above pathogen responsive defence genes in both cultivars while benzo(1,2,3)thiadiazole-7-carbothionic acid S-methyl ester (BTH) treatment weakly induced them in Kennedy only. Similarly. treatment with MJ before inoculation significantly delayed the development of necrotic symptoms for 2 weeks in both wheat cultivars, while BTH pre-treatments delayed symptom development in Kennedy only. The chemically induced protection, therefore, correlated with induction of the F. pseudograminearum-responsive genes. These results support the emerging role of jasmonate signalling in defence against necrotrophic fungal pathogens in monocots and future manipulation of this pathway may improve CR resistance in wheat. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
用不同浓度Hg处理两种基因型小麦种子,较低浓度的Hg对小麦种子萌发影响比较小,对抗旱品种的小麦种子(陕合)的萌发有略微的刺激作用。小剂量、短时间的重金属处理可以提高POD的活性,发芽后受到Hg胁迫的陕合对Hg的耐受性低于发芽前就受到Hg胁迫的陕合,也低于同样胁迫处理的小麦品种(郑引)。发芽后进行Hg胁迫处理情况下,陕合对于Hg胁迫比较敏感,POD活性随着Hg浓度的升高而下降;而郑引,低浓度Hg对其POD活性有促进作用。在小麦发芽前就受到Hg胁迫的情况下,陕合和郑引的POD活性都随着Hg浓度增加表现为先上升而后下降趋势。
Resumo:
Wheat (Triticum aestivum L.), Anahuac cultivar, were treated with six triadimenol (0,0; 12,5; 25,0; 37,5; 50,0 and 62,5 g of a.i./100 kg of seeds) and tebuconazole (0,0; 7,5; 15,0; 22,5 30,0 and 37,5 g of a.i./100 kg of seeds) dosis to reduce the subcrown internode length and then to deep the point of emission of adventitious roots. Seeds were seeded in pots with soil, with 5 cm of depth and after two weeks the seedlings number was counted and the subcrown internode length (CM) was evaluated. The CM may be represented by the equations: a) CM = 4,49 - 0,1779 x + 0,002161 x2 (r2 = 0,9247); b) CM = 4,62 - 0,29948 y + 0,006480 y3 - 0,00004622 y3 (r2 = 0,9551), where ''x'' and ''y'' represent tebuconazole and triadimenol dosis, respectively. The CM showed minimum values for triadimenol dosis equal to or higher than 37,5 g a.i./100 kg of seeds and for tebuconazole decreased continuously with the increase of the product dosis, showing values near to 1 cm for the maximum dosis. The triadimenol allowed, at suitable dosis, almost total inhibition of the wheat seedlings subcrown internode with no effects on seedling emergence and initial growth.
Resumo:
Nitrate reductase (NR, EC 1.6.6.1) activity in higher plants is regulated by a variety of environmental factors and oscillates with a characteristic diurnal rhythm. In this study, we have demonstrated that the diurnal cycle of NR expression and activity in pineapple (Ananas comosus, cv. Smooth Cayenne) can be strongly modified by changes in the day/night temperature regime. Plants grown under constant temperature (28 degrees C light/dark) showed a marked increase in the shoot NR activity (NRA) during the first half of the light period, whereas under thermoperiodic conditions (28 degrees C light/15 degrees C dark) significant elevations in the NRA were detected only in the root tissues at night. Under both conditions, increases in NR transcript levels occurred synchronically about 4 h prior to the corresponding elevation of the NRA. Diurnal analysis of endogenous cytokinins indicated that transitory increases in the levels of zeatin, zeatin riboside and isopentenyladenine riboside coincided with the accumulation of NR transcripts and preceded the rise of NRA in the shoot during the day and in the root at night, suggesting these hormones as mediators of the temperature-induced modifications of the NR cycle. Moreover, these cytokinins also induced NRA in pineapple when applied exogenously. Altogether, these results provide evidence that thermoperiodism can modify the diurnal cycle of NR expression and activity in pineapple both temporally and spatially, possibly by modulating the day/night changes in the cytokinin levels. A potential relationship between the day/night NR cycle and the photosynthetic pathway performed by the pineapple plants (C(3) or CAM) is also discussed.
Resumo:
Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up-and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.