38 resultados para WFD
Resumo:
The application of the Water Framework Directive (WFD) in the European Union (EU) targets certain threshold levels for the concentration of various nutrients, nitrogen and phosphorous being the most important. In the EU, agri-environmental measures constitute a significant component of Pillar 2—Rural Development Policies in both financial and regulatory terms. Environmental measures also are linked to Pillar 1 payments through cross-compliance and the greening proposals. This paper drawing from work carried out in the REFRESH FP7 project aims to show how an INtegrated CAtchment model of plant/soil system dynamics and instream biogeochemical and hydrological dynamics can be used to assess the cost-effectiveness of agri-environmental measures in relation to nutrient concentration targets set by the WFD, especially in the presence of important habitats. We present the procedures (methodological steps, challenges and problems) for assessing the cost-effectiveness of agri-environmental measures at the baseline situation, and climate and land use change scenarios. Furthermore, we present results of an application of this methodology to the Louros watershed in Greece and discuss the likely uses and future extensions of the modelling approach. Finally, we attempt to reveal the importance of this methodology for designing and incorporating alternative environmental practices in Pillar 1 and 2 measures.
Resumo:
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais
Resumo:
The Water Framework Directive (WFD) defines common objectives for water resources throughout the European Union (EU). Given this general approach to water preservation and water policy, the objective of this paper is to analyse whether common patterns of water consumption exist within Europe. In particular, our study uses two methods to reveal the reasons behind sectoral water use in all EU countries. The first method is based on an accounting indicator that calculates the water intensity of an economy as the sum of sectoral water intensities. The second method is a subsystem input‐output model that divides total water use into different income channels within the production system. The application uses data for the years 2005 and 2009 on water consumption in the production system of the 27 countries of the EU. From our analysis it emerges that EU countries are characterized by very different patterns of water consumption. In particular water consumption by the agriculture sector is extremely high in Central/Eastern Europe, relative to the rest of Europe. In most countries, the water used by the fuel, power and water sector is consumed to satisfy domestic final demand. However, our analysis shows that for some countries exports from this sector are an important driver of water consumption. Focusing on the agricultural sector, the decomposition analysis suggests that water usage in Mediterranean countries is mainly driven by final demand for, and exports of, agricultural products. In Central/Eastern Europe domestic final demand is the main driver of water consumption, but in this region the proportion of water use driven by demand for exports is increasing over time. Given these heterogeneous water consumption patterns, our analysis suggests that Mediterranean and Central/Eastern European countries should adopt specific water policies in order to achieve efficient levels of water consumption in the European Union. JEL codes: N5; C67 Keywords: Water use, Subsystem input–output model; Water intensity, European Union.
Resumo:
The deterioration of surface waters is one of the most important issues in the environmental management of the European Union. Thus, the EU Water Framework Directive 2000/60/EC (WFD) requires “good ecological and chemical status” of surface waters by 2015 allowing only a slight departure from ecological reference conditions characterized by the biological communities typical for the conditions of minimal anthropogenic impact. The WFD requires the determination of ecological reference conditions and the present ecological status of surface waters. To meet this legislative demand, sedimentary diatom assemblages were used in these studies with various methods 1) to assess natural and human activity induced environmental changes, 2) to characterize background conditions 3) to evaluate the present ecological status and 4) to predict the future of the water bodies in the light of palaeolimnological data. As the WFD refers to all surface waters, both coastal and inland sites were included. Two long and two short sediment cores from the Archipelago Sea in the northern Baltic Sea were examined for their siliceous microfossils in order to assess (1) the Holocene palaeoenvironmental history and (2) the recent eutrophication of the area. The diatom record was divided into local diatom assemblage zones (LDAZ, long cores) and diatom assemblage zones (DAZ, short cores). Locally weighted weighted averaging regression and calibration (LWWA) was applied for the quantitative reconstruction of past TN concentrations (short cores). An age model for the long cores was constructed by using independent palaeomagnetic and AMS-14C methods. The short cores were dated using radiometric (210Pb, 226Ra and 137Cs) methods. The long cores date back to the early history of the Archipelago Sea, which was freshwater – no salinity increase referable to the brackish phase of the Yoldia Sea is recognized. The nutrient status of the lacustrine phase was slightly higher in the Archipelago Sea than in the Baltic Proper. Initial brackish-water influence is observed at 8 150 ±80 cal. BP (LDAZ4), but fully brackish conditions were established at 7 700 ±80 cal. BP (LDAZ5). The diatom assemblages indicate increasing salinity, warming climate and possible eutrophic conditions during the lacustrine to brackish-water transition. The decreasing abundance of Pseudosolenia calcar-avis (Schultze) Sundström and the increasing abundance of the ice-cover indicator species Pauliella taeniata (Grunow) Round and Basson indicate decreasing salinity and climatic cooling after ca. 5 000 cal. BP. Signs of eutrophication are visible in the most recent diatom assemblage zones of both short cores. Diatom-inferred total nitrogen (DI-TN) reconstructions partially fail to trace the actual measured total nitrogen concentrations especially from the late 1980s to the mid 1990s. This is most likely due to the dominating diatom species Pauliella taeniata, Thalassiosira levanderi Van Goor and Fragilariopsis cylindrus (Grunow) W. Krieger being more influenced by factors such as the length of the ice-season rather than nutrient concentrations. It is concluded that the diatom assemblages of the study sites are principally governed by climate fluctuations, with a slight influence of eutrophication visible in the most recent sediments. There are indications that global warming, with reduced ice cover, could impact the spring blooming diatom species composition in the Archipelago Sea. In addition, increased sediment accumulation in the early 90s coincides with the short ice-seasons suggesting that warming climate with decreasing ice-cover may increase sedimentation in the study area. The diverse diatom assemblages dominated by benthic species (54 %) in DAZ1 in the Käldö Fjärd core can be taken as background diatom assemblages for the Archipelago Sea. Since then turbidity has increased and the diatom assemblages have been dominated by planktonic diatoms from around the mid 1800s onwards. The reconstructed reference conditions for the total nitrogen concentrations fluctuate around 400 μg l-1. Altogether two short sediment cores and eight short cores for top-bottom analysis were retrieved from Lake Orijärvi and Lake Määrjärvi to assess the impact of the acid mine drainage (AMD) derived metals from the Orijärvi mine tailings on the diatom communities of the lakes. The Cu (Pb, Zn) mine of Orijärvi (1757 – 1956) was the first one in Finland where flotation techniques (1911 – 1955) were used to enrich ore and large quantities of tailings were produced. The AMD derived metal impact to the lakes was found to be among the heaviest thus far recorded in Finland. Concentrations of Cu, Pb and Zn in Lake Orijärvi sediments are two to three orders of magnitude higher than background values. The metal inputs have affected Lake Orijärvi and Lake Määrjärvi diatom communities at the community levels through shifts in dominant taxa (both lakes) and at the individual level through alteration in frustule morphology (Lake Orijärvi). At present, lake water still has elevated heavy metal levels, indicating that the impact from the tailings area continues to affect both lakes. Lake Orijärvi diatom assemblages are completely dominated by benthic species and are lacking planktonic diatoms. In Lake Määrjärvi the proportion of benthic and tychoplanktonic diatoms has increased and the planktonic taxa have decreased in abundance. Achnanthidium minutissimum Kützing and Brachysira vitrea (Grun.) R. Ross in Hartley were the most tolerant species to increased metal concentrations. Planktonic diatoms are more sensitive to metal contamination than benthic taxa, especially species in the genus Cyclotella (Kützing) Brébisson. The ecological reference conditions assessed in this study for Lake Orijärvi and Lake Määrjärvi comprise diverse planktonic and benthic communitites typical of circumneutral oligotrophic lakes, where the planktonic diatoms belonging to genera Cyclotella , Aulacoseira Thwaites, Tabellaria Ehrenberg and Asterionella Hassall dominate in relative abundances up to ca. 70%. The benthic communities are more diverse than the planktonic consisting of diatoms belonging to the genera Achnanthes Bory, Fragilaria Lyngbye and Navicula St. Vincent. This study clearly demonstrates that palaeolimnological methods, especially diatom analysis, provide a powerful tool for the EU Water Frame Work Directive for defining reference conditions, natural variability and current status of surface waters. The top/bottom approach is a very useful tool in larger-scale studies needed for management purposes. This “before and after” type of sediment sampling method can provide a very time and cost effective assessment of ecological reference conditions of surface waters.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.
Resumo:
This CEPS Task Force Report focuses on how to improve water efficiency in Europe, notably in public supply, households, agriculture, energy and manufacturing as well as across sectors. It presents a number of recommendations on how to make better use of economic policy instruments to sustainably manage the EU’s water resources. Published in the run-up to the European Commission’s “Blueprint to Safeguard Europe’s Waters”, the report contributes to the policy deliberations in two ways. First, by assessing the viability of economic policy instruments, it addresses a major shortcoming that has so far prevented the 2000 EU Water Framework Directive (WFD) from becoming fully effective in practice: the lack of appropriate, coherent and effective instruments in (some) member states. Second, as the Task Force report is the result of an interactive process involving a variety of stakeholders, it is able to point to the key differences in interpreting and applying WFD principles that have led to a lack of policy coherence across the EU and to offer some pragmatic advice on moving forward.
Resumo:
The WFDEI meteorological forcing data set has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. We discuss the specifics of how changes in the reanalysis and processing have led to improvement over the WFD. We attribute improvements in precipitation and wind speed to the latest reanalysis basis data and improved downward shortwave fluxes to the changes in the aerosol corrections. Covering 1979–2012, the WFDEI will allow more thorough comparisons of hydrological and Earth System model outputs with hydrologically and phenologically relevant satellite products than using the WFD.
Resumo:
This paper describes the hydrochemistry of a lowland, urbanised river-system, The Cut in England, using in situ sub-daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190,000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Though 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in-stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. This article is protected by copyright. All rights reserved.
Resumo:
The EU Water Framework Directive (WFD) requires that the ecological and chemical status of water bodies in Europe should be assessed, and action taken where possible to ensure that at least "good" quality is attained in each case by 2015. This paper is concerned with the accuracy and precision with which chemical status in rivers can be measured given certain sampling strategies, and how this can be improved. High-frequency (hourly) chemical data from four rivers in southern England were subsampled to simulate different sampling strategies for four parameters used for WFD classification: dissolved phosphorus, dissolved oxygen, pH and water temperature. These data sub-sets were then used to calculate the WFD classification for each site. Monthly sampling was less precise than weekly sampling, but the effect on WFD classification depended on the closeness of the range of concentrations to the class boundaries. In some cases, monthly sampling for a year could result in the same water body being assigned to three or four of the WFD classes with 95% confidence, due to random sampling effects, whereas with weekly sampling this was one or two classes for the same cases. In the most extreme case, the same water body could have been assigned to any of the five WFD quality classes. Weekly sampling considerably reduces the uncertainties compared to monthly sampling. The width of the weekly sampled confidence intervals was about 33% that of the monthly for P species and pH, about 50% for dissolved oxygen, and about 67% for water temperature. For water temperature, which is assessed as the 98th percentile in the UK, monthly sampling biases the mean downwards by about 1 °C compared to the true value, due to problems of assessing high percentiles with limited data. Low-frequency measurements will generally be unsuitable for assessing standards expressed as high percentiles. Confining sampling to the working week compared to all 7 days made little difference, but a modest improvement in precision could be obtained by sampling at the same time of day within a 3 h time window, and this is recommended. For parameters with a strong diel variation, such as dissolved oxygen, the value obtained, and thus possibly the WFD classification, can depend markedly on when in the cycle the sample was taken. Specifying this in the sampling regime would be a straightforward way to improve precision, but there needs to be agreement about how best to characterise risk in different types of river. These results suggest that in some cases it will be difficult to assign accurate WFD chemical classes or to detect likely trends using current sampling regimes, even for these largely groundwater-fed rivers. A more critical approach to sampling is needed to ensure that management actions are appropriate and supported by data.
Resumo:
This paper reports the results obtained using the osmotic stress method applied to the purified cathodic and anodic hemoglobins (Hbs) from the catfish Hoplosternum littorale, a species that displays facultative accessorial air oxygenation. We demonstrate that water potential affects the oxygen affinity of H. littorale Hbs in the presence of an inert solute (sucrose). Oxygen affinity increases when water activity increases, indicating that water molecules stabilize the high-affinity state of the Hb. This effect is the same as that observed in tetrameric vertebrate Hbs. We show that both anodic and cathodic Hbs show conformational substrates similar to other vertebrate Hbs. For both Hbs, addition of anionic effectors, especially chloride, strongly increases the number of water molecules bound, although anodic Hb did not exhibit sensitivity to saturating levels of ATP. Accordingly, for both Hbs, we propose that the deoxy conformations coexist in at least two anion-dependent allosteric states, T-o and T-x, as occurs for human Hb. We found a single phosphate binding site for the cathodic Hb.
Resumo:
[ES] El valle de La Aldea, al oeste de Gran Canaria, se dedica a la agricultura intensiva en un clima semi-árido. El agua de riego proviene de aguas superficiales y subterráneas. El acuífero está aislado del resto de la isla por el borde impermeable de la Caldera de Tejeda. El aluvial principal de La Aldea se comporta como un depósito de almacenamiento de agua que se llena y vacía, con un tiempo medio de renovación de aproximadamente 2 años. Las aguas subterráneas muestran una alta salinidad de origen natural, debido a la evapoconcentración de la deposición atmosférica y la interacción agua-roca, y antropogénica debida a los retornos de riego que producen contenidos en nitratos que pueden alcanzar los 700 mg/L. Se ha establecido un modelo conceptual de funcionamiento del acuífero y se han cuantificado los términos del balance de agua. El uso actual del acuífero está en conflicto con los requerimientos de la Directiva Marco del Agua (DMA). Sin embargo, dado que su uso es clave para el desarrollo económico del valle de La Aldea en particular, cabe plantear las excepciones legales específicas previstas en la DMA.
Resumo:
In order to protect river water quality, highly affected in urban areas by continuos as intermittent immissions, it is necessary to adopt measures to intercept and treat these polluted flows. In particular during rain events, river water quality is affected by CSOs activation. Built in order to protect the sewer system and the WWTP by increased flows due to heavy rains, CSOs divert excess flows to the receiving water body. On the basis of several scientific papers, and of direct evidences as well, that demonstrate the detrimental effect of CSOs discharges, also the legislative framework moved towards a stream standard point of view. The WFD (EU/69/2000) sets new goals for receiving water quality, and groundwater as well, through an integrated immission/emissions phylosophy, in which emission limits are associated with effluent standards, based on the receiving water characteristics and their specific use. For surface waters the objective is that of a “good” ecological and chemical quality status. A surface water is defined as of good ecological quality if there is only slight departure from the biological community that would be expected in conditions of minimal anthropogenic impact. Each Member State authority is responsible for preparing and implementing a River Basin Management Plan to achieve the good ecological quality, and comply with WFD requirements. In order to cope with WFD targets, and thus to improve urban receiving water quality, a CSOs control strategy need to be implemented. Temporarily storing the overflow (or at least part of it) into tanks and treating it in the WWTP, after the end of the storm, showed good results in reducing total pollutant mass spilled into the receiving river. Italian State Authority, in order to comply with WFD statements, sets general framework, and each Region has to adopt a Water Remediation Plan (PTA, Piano Tutela Acque), setting goals, methods, and terms, to improve river water quality. Emilia Romagna PTA sets 25% reduction up to 2008, and 50% reduction up to 2015 fo total pollutants masses delivered by CSOs spills. In order to plan remediation actions, a deep insight into spills dynamics is thus of great importance. The present thesis tries to understand spills dynamics through a numerical and an experimental approach. A four months monitoring and sampling campaign was set on the Bologna sewer network, and on the Navile Channel, that is the WWTP receiving water , and that receives flows from up to 28 CSOs during rain events. On the other hand, the full model of the sewer network, was build with the commercial software InfoWorks CS. The model was either calibrated with the data from the monitoring and sampling campaign. Through further model simulations interdependencies among masses spilled, rain characteristics and basin characteristics are looked for. The thesis can be seen as a basis for further insighs and for planning remediation actions.
Resumo:
This article describes the outcome and follow-up discussions of an expert group meeting (Amsterdam, October 9, 2009) on the applicability of toxicity profiling for diagnostic environmental risk assessment. A toxicity profile was defined as a toxicological "fingerprint" of a sample, ranging from a pure compound to a complex mixture, obtained by testing the sample or its extract for its activity toward a battery of biological endpoints. The expert group concluded that toxicity profiling is an effective first tier tool for screening the integrated hazard of complex environmental mixtures with known and unknown toxicologically active constituents. In addition, toxicity profiles can be used for prioritization of sampling locations, for identification of hot spots, and--in combination with effect-directed analysis (EDA) or toxicity identification and evaluation (TIE) approaches--for establishing cause-effect relationships by identifying emerging pollutants responsible for the observed toxic potency. Small volume in vitro bioassays are especially applicable for these purposes, as they are relatively cheap and fast with costs comparable to chemical analyses, and the results are toxicologically more relevant and more suitable for realistic risk assessment. For regulatory acceptance in the European Union, toxicity profiling terminology should keep as close as possible to the European Water Framework Directive (WFD) terminology, and validation, standardization, statistical analyses, and other quality aspects of toxicity profiling should be further elaborated.