986 resultados para WESTERN BOUNDARY
Resumo:
We present evidence that the springtime western boundary current (WBC) in the Bay of Bengal is a continuous northward-flowing current from about 12 degrees N to 17 degrees N, which then separates from the coast at around 18 degrees N. We first revisit a hydrographic data set collected in 1987 from a potential vorticity perspective, and then analyze absolute dynamic height maps from satellite altimeters during the period 2000-2010. The altimetric maps suggest that the mean configuration of the WBC is that of an intense current with two anticyclonic eddies on the offshore side, which are part of the basin-wide anticyclonic circulation. The WBC consistently separates from the coast at around 18 degrees N in all years between 2000 and 2010. The path of the eastward-flowing mean stream after separation appears to be consistent with isolines of f/H and with Ertel's potential vorticity, based on an analysis of the hydrographic data from 1987.
Resumo:
In this study we describe the velocity structure and transport of the North Equatorial Current (NEC), the Kuroshio, and the Mindanao Current (MC) using repeated hydrographic sections near the Philippine coast. A most striking feature of the current system in the region is the undercurrent structure below the surface flow. Both the Luzon Undercurrent and the Mindanao Undercurrent appear to be permanent phenomena. The present data set also provides an estimate of the mean circulation diagram (relative to 1500 dbar) that involves a NEC transport of 41 Sverdrups (Sv), a Kuroshio transport of 14 Sv, and a MC transport of 27 Sv, inducing a mass balance better than 1 Sv within the region enclosed by stations. The circulation diagram is insensitive to vertical displacements of the reference level within the depth range between 1500 and 2500 dbar. Transport fluctuations are, in general, consistent with earlier observations; that is, the NEC and the Kuroshio vary in the same phase with a seasonal signal superimposed with interannual variations, and the transport of the MC is dominated by a quasi-biennial oscillation. Dynamic height distributions are also examined to explore the dynamics of the current system.
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
A key idea in the study of the Atlantic meridional overturning circulation (AMOC) is that its strength is proportional to the meridional density gradient, or more precisely, to the strength of the meridional pressure gradient. A physical basis that would tell us how to estimate the relevant meridional pressure gradient locally from the density distribution in numerical ocean models to test such an idea, has been lacking however. Recently, studies of ocean energetics have suggested that the AMOC is driven by the release of available potential energy (APE) into kinetic energy (KE), and that such a conversion takes place primarily in the deep western boundary currents. In this paper, we develop an analytical description linking the western boundary current circulation below the interface separating the North Atlantic Deep Water (NADW) and Antarctic Intermediate Water (AAIW) to the shape of this interface. The simple analytical model also shows how available potential energy is converted into kinetic energy at each location, and that the strength of the transport within the western boundary current is proportional to the local meridional pressure gradient at low latitudes. The present results suggest, therefore, that the conversion rate of potential energy may provide the necessary physical basis for linking the strength of the AMOC to the meridional pressure gradient, and that this could be achieved by a detailed study of the APE to KE conversion in the western boundary current.
Resumo:
It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Signed: Wm. Hand Browne, Albert Ritchie, committee.
Resumo:
Observations and models have shown the presence of intraseasonal fluctuations in 20-30-day and 10-20-day bands in the equatorial Indian Ocean west of 60 degrees E (WEIO). Their spatial and temporal structures characterize them as Yanai waves, which we label low-frequency (LFYW) and high-frequency (HFYW) Yanai waves, respectively. We explore the dynamics of these intraseasonal signals, using an ocean general circulation model (Modular Ocean Model) and a linear, continuously stratified model. Yanai waves are forced by the meridional wind tau(y) everywhere in the WEIO most strongly during the monsoon seasons. They are forced both directly in the interior ocean and by reflection of the interior response from the western boundary; interference between the interior and boundary responses results in a complex surface pattern that propagates eastward and has nodes. Yanai waves are also forced by instabilities primarily during June/July in a region offshore from the western boundary (52-55 degrees E). At that time, eddies, generated by barotropic instability of the Southern Gyre, are advected southward to the equator. There, they generate a westward-propagating, cross-equatorial flow field, v(eq), with a wave number/frequency spectrum that fits the dispersion relation of a number of Yanai waves, and these waves are efficiently excited. Typically, Yanai waves associated with several baroclinic modes are excited by both wind and eddy forcing; and typically, they superpose to create beams that carry energy vertically and eastward along ray paths. The same processes generate LFYWs and HFYWs, and hence, their responses are similar; differences are traceable to the property that HFYWs have longer wavelengths than LFYWs for each baroclinic mode.
Resumo:
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
Resumo:
It is widely thought that changes in both the surface buoyancy fluxes and wind stress drive variability in the Atlantic meridional overturning circulation (AMOC), but that they drive variability on different time scales. For example, wind forcing dominates short-term variability through its effects on Ekman currents and coastal upwelling, whereas buoyancy forcing is important for longer time scales (multiannual and decadal). However, the role of the wind forcing on multiannual to decadal time scales is less clear. Here the authors present an analysis of simulations with the Nucleus for European Modelling of the Ocean (NEMO) ocean model with the aim of explaining the important drivers of the zonal density gradient at 26°N, which is directly related to the AMOC. In the experiments, only one of either the wind stress or the buoyancy forcing is allowed to vary in time, whereas the other remains at its seasonally varying climatology. On subannual time scales, variations in the density gradient, and in the AMOC minus Ekman, are driven largely by local wind-forced coastal upwelling at both the western and eastern boundaries. On decadal time scales, buoyancy forcing related to the North Atlantic Oscillation dominates variability in the AMOC. Interestingly, however, it is found that wind forcing also plays a role at longer time scales, primarily impacting the interannual variability through the excitation of Rossby waves in the central Atlantic, which propagate westward to interact with the western boundary, but also by modulating the decadal time-scale response to buoyancy forcing.
Resumo:
The Western Boundary Undercurrent (WBUC), off eastern America, is an important component of the Atlantic Meridional Overturning circulation and is the principal route for southward transport of North Atlantic waters and southward return of Southern Source Water (SSW). Here a direct flow speed proxy (mean grain size of the sortable silt) is used to infer the vigour of flow of the palaeo-WBUC at Blake Outer Ridge, (ODP Site 1060, depth 3481 m) during Marine Isotope Stage (MIS) 3. The overall shape of the flow speed proxy record shows a complex pattern of variability, with generally more vigorous flow and larger-scale flow variations between 35 and 60 ka than in the younger part of MIS 3 and MIS 2 (b35 ka). Six events of reduced bottom flow vigour (Slow Events, SEs) occur. These appear uncorrelated with Heinrich events, but are instead synchronous with the warming phases of Antarctic Warm Events A-1 to A-4 (with one new one, A-1a and one poorly defined, 'A-0'). This indicates that Antarctic climate exerts a stronger control on deep flow vigour in the North Atlantic during MIS 3 than Northern Hemisphere climate. The correspondence of SEs with Antarctic warming suggests a weaker WBUC flow due to reduced volume flux at SSW source or reduced SSW density. Because the variability of the lower limb of the WBUC was not connected to sharp North Atlantic changes in temperature, it is unlikely that the Dansgaard/Oeschger cycles were associated with a mode of MOC variation involving wholeocean overturn, but more likely with perturbations of only the shallow Glacial Gulf Stream-Glacial Northern Source Intermediate Water cell. Nutrient proxies (benthic carbon isotopes and Cd/Ca of Uvigerina peregrina) at this site show similar trends to the GRIP delta18O record. This correlation has previously been attributed mainly to hydrographic and flow changes but is here shown to be better explained by variations in surface ocean productivity and subsequent decomposition of 12C rich organic material on the sea floor.
Resumo:
High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.
Resumo:
The low-level jet (LLJ) over the Indian region, which is most prominent during the monsoon (June-September) season, has been studied with a general circulation model (GCM). The role of African orography in modulating this jet is the focus of this article. The presence o African orography intensifies the cross-equatorial flow. Contrary to previous modelling Studies we find that cross-equatorial flow occurs even in the absence of African orography, though this flow is muc weaker even when the Indian monsoon rainfall is high. However, the location of the meridional jet near the equator in the Somali region is linked to the Indian monsoon rainfall rather than to the land-sea contrast over Somalia. Also, the presence of African orography, and not the strength of the Indian monsoon, controls the vertical extent of the equatorial meridional wind. In an aqua-planet simulation, the cross-equatorial flow occurs about 30 to the west of the rainfall maximum. Thus, the longitudinal location of the equatorial Somali jet depends upon the occurrence of monsoon heating, but the vertical structure of the jet is on account of the western boundary current in the atmosphere due to the East African highlands under the influence of monsoonal heat source.
Resumo:
In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 6 1/2-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5 degrees), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western boundary into the central/eastern Arabian Sea, where it provides an additional source of remineralization that drives the ASOMZ to suboxic levels. The model BBOMZ is weaker than the ASOMZ because the Bay lacks a remote source of detritus from the western boundary. Although detritus has a prominent annual cycle, the model OMZs do not because there is not enough time for significant remineralization to occur.