986 resultados para WEAKLY MAGNETIZED DISKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle-in-cell simulations of relativistic, weakly magnetized collisionless shocks show that particles can gain energy by repeatedly crossing the shock front. This requires scattering off self-generated small length-scale magnetic fluctuations. The radiative signature of this first-order Fermi acceleration mechanism is important for models of both the prompt and afterglow emission in gamma-ray bursts and depends on the strength parameter a = lambda e/delta B/mc(2) of the fluctuations (lambda is the length scale and vertical bar delta B vertical bar is the magnitude of the fluctuations). For electrons (and positrons), acceleration saturates when the radiative losses produced by the scattering cannot be compensated by the energy gained on crossing the shock. We show that this sets an upper limit on both the electron Lorentz factor gamma <10(6) (n/1 cm(-3))(-1/6)(-1/6) and on the energy of the photons radiated during the scattering process h omega(max) <40Max(a, 1)(n/1 cm(-3))(1/6)(-1/6) eV, where n is the number density of the plasma and (gamma) over bar is the thermal Lorentz factor of the downstream plasma, provided a <a(crit) similar to 10(6). This rules out "jitter" radiation on self-excited fluctuations with a <I as a source of gamma rays, although high-energy photons might still be produced when the jitter photons are upscattered in an analog of the synchrotron self-Compton process. In fluctuations with a > 1, radiation is generated by the standard synchrotron mechanism, and the maximum photon energy rises linearly with a, until saturating at 70 MeV, when a = a(crit).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediments recovered during Leg 90 (Sites 587-594, plus Site 586 cored during Leg 89) are, in general, extremely weakly magnetized carbonate oozes and chalks with NRM intensities seldom greater than 0.05 µG. The quality of the paleomagnetic records deteriorates with increasing depth caused by the combined effects of removal of primary magnetic oxides by sulfate reduction processes and the dispersal of magnetic grains during compaction. Magnetic reversal sequences are generally recognizable back to the Gilbert, 3.4 to 5.35 m.y., except at equatorial Site 586 where only the Brunhes/Matuyama boundary could be identified. Longer reversal records were obtained at Site 588 (to Chron 13, about 13 m.y.) and Site 594 (base of Chron 5, about 5.9 m.y.). Sediments are characterized by extremely high calcium carbonate contents (90-100%) with almost no biosiliceous components. Blebs and streaks of pyrite are common, and the presence of iron sulfides with poor magnetic stabilities is suspected, although not yet positively identified. Viscous components of magnetization are common, sometimes to the extent of dominating the primary remanence, and there is evidence to suggest that a magnetic remanence is imparted during core recovery. Siliceous carbonate oozes provide better paleomagnetic records than pure carbonate oozes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paleomagnetic measurements were made on 913 samples from 11 holes (626B, 626C, 627B, 628A, 630A, 631A, 632A, 632B, 633A, 634A, and 635B) drilled in and around the Bahamas carbonate bank during Ocean Drilling Program Leg 101. These samples displayed a wide range of magnetic intensities (from about 1.0 A/m to 1.6 * 10**- 6 A/m) and magnetic behavior. Most samples were weakly magnetized and had low mean destructive fields; however, sediments from sections of several holes were strongly magnetic with stable magnetizations. Magnetic-polarity interpretations were made on a Campanian unit from Hole 627B, a mid-Oligocene unit from Hole 628A, and a Plio-Pleistocene section from Hole 633A. Sediments in the upper parts of Holes 627B, 632A, and 633A have high magnetic intensities that decay 2 to 3 orders of magnitude over depths of 5 to 18 mbsf. The pattern of decline of the magnetism and the change in mean destructive fields and geochemical conditions in these holes are consistent with diagenetic dissolution of the magnetic minerals in a suboxic or anoxic-sulfidic environment. Paleolatitudes were calculated from samples from 16 time units in 7 holes and compared to the apparent polar wander path of the North American plate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 134 (Vanuatu), geological high sensitivity magnetic tools (GHMT) developed by CEA-LETI and TOTAL were used at two drill sites. GHMT combine two sensors, a proton magnetometer for total magnetic field measurements with an operational accuracy of 0.1 nanoteslas (nT), and a highly sensitive induction tool to measure the magnetic susceptibility with an operational accuracy of a few 10**-6 SI units. Hole 829A was drilled through an accretionary prism and the downhole measurements of susceptibility correlate well with other well-log physical properties. Sharp susceptibility contrasts between chalk and volcanic silt sediment provide complementary data that help define the lithostratigraphic units. At Hole 831B magnetic susceptibility and total field measurements were performed through a 700-m reef carbonate sequence of a guyot deposited on top of an andesitic volcano. The downhole magnetic susceptibility is very low and the amplitude of peak-to-peak anomalies is less than a few 10**-5 SI units. Based on the repeatability of the measurements, the accuracy of the magnetic logging measurements was demonstrated to be excellent. Total magnetic field data at Hole 831B reveal low magnetic anomalies of 0.5 to 5 nT and the measurement of a complete repeat section indicates an accuracy of 0.1 to 0.2 nT. Due to the inclination of the earth's magnetic field in this area (~-40°) and the very low magnetic susceptibility of the carbonate, the contribution of the induced magnetization to the total field measured in the hole is negligible. Unfortunately, because the core recovery was extremely poor (<5%) no detailed comparison between the core measurements and the downhole magnetic data could be made. Most samples have a diamagnetic susceptibility and very low intensity of remanent magnetization (< 10**-4 A/m), but a few samples have a stable remanent magnetization up to 0.005 A/m. These variations of the intensity of the remanent magnetization suggest a very heterogeneous distribution of the magnetization in the carbonate sequence that could explain the magnetic field anomalies measured in these weakly magnetized rocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 mu m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_H) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the derivation of a kinetic equation for a charged test particle weakly interacting with an electrostatic plasma in thermal equilibrium, subject to a uniform external magnetic field. The Liouville equation leads to a generalized master equation to second order in the `weak' interaction; a Fokker-Planck-type equation then follows as a `Markovian' approximation. It is shown that such an equation does not preserve the positivity of the distribution function f(x,v;t). By applying techniques developed in the theory of open systems, a correct Fokker-Planck equation is derived. Explicit expressions for the diffusion and drift coefficients, depending on the magnetic field, are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature similar to 10(8) - 10(9.5) K compared to the hot protons of temperature similar to 10(10.2) - 10(11.8) K in the range of the accretion rate in Eddington units 0.01 less than or simiar to (M) over dot less than or similar to 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed minosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrodinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariate Fokker-Planck-type kinetic equation modeling a test - panicle weakly interacting with an electrostatic plasma. in the presence of a magnetic field B . is analytically solved in an Ornstein - Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments and panicle density as a function of time. The process is diffusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~ O(HS p AT ). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.