903 resultados para WBAN Bluetooth Wearable Sensors Cupid RTOS RTX RL-ARM cortex-m4 WSN parkinson


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il recente sviluppo commerciale di smartphone, tablet e simili dispositivi, ha portato alla ricerca di soluzioni hardware e software dotate di un alto livello di integrazione, in grado di supportare una potenza di calcolo e una versatilità di utilizzo sempre più crescenti, pur mantenendo bassi i consumi e le dimensioni dei dispositivi. Questo sviluppo ha consentito parallelamente a simili tecnologie di trovare applicazione in tanti altri settori, tra i quali quello biomedicale. Il lavoro esposto in questa tesi si inserisce nel contesto appena descritto e, in particolare, consiste nello sviluppo di un sistema WBAN ideato per garantire maggiore flessibilità, controllo e personalizzazione nella terapia riabilitativa dei pazienti affetti da Morbo di Parkinson. In questo campo è stata dimostrata l'efficacia, in termini di miglioramento delle condizioni di vita dell'individuo, dell'esercizio fisico e in particolare di una serie di fisioterapie riabilitative specifiche. Tuttavia manca ancora uno strumento in grado di garantire più indipendenza, continuità e controllo,per le persone affette da MP, durante l'esecuzione di questi esercizi; senza che sia strettamente necessario l'intervento di personale specializzato per ogni seduta fisioterapeutica. Inoltre manca un sistema che possa essere comodamente trasportato dal paziente nelle attività di tutti i giorni e che consenta di registrare e trasmettere eventi particolari legati alla patologia, come blocchi motori e cadute accidentali. Il presente lavoro di tesi tratta della realizzazione di un Firmware per la gestione di un Nodo Centrale che funge da master in una rete WBAN a tre nodi. L'obbiettivo è quello di integrare in tale firmware le funzioni di acquisizione dati dai sensori on-board, comunicazione tra i nodi della rete e gestione delle periferiche hardware secondarie; in particolare per lo sviluppo è stato usato un Sistema Operativo Real-Time (RTOS) del quale sono esposti vantaggi e svantaggi dell’utilizzo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The Unified Huntington’s Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments. Objective: To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home. Methods: Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home. A secondchest sensor was worn for six additional days at home. Gait measures were compared between controls, participants with Huntington disease, and participants with Huntington disease grouped by UHDRS total motor score using Cohen’s d values. Results: Fifteen individuals with Huntington disease and five controls completed the study. Sensor data were successfully captured from 18 of the 20 participants at home. In the clinic, the standard deviation of step time (timebetween consecutive steps) was increased in Huntington disease (p<0.0001; Cohen’s d=2.61) compared to controls. At home with additional observations, significant differences were observed in seven additional gait measures. The gait of individuals with higher total motor scores (50 or more) differed significantly from those with lower total motor scores (below 50) on multiple measures at home. Conclusions: In this pilot study, the use of wearable sensors in clinic and at home was feasible and demonstrated gait differences between controls, participants with Huntington disease, and participants with Huntington diseasegrouped by motor impairment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technology is increasingly infiltrating all aspects of our lives and the rapid uptake of devices that live near, on or in our bodies are facilitating radical new ways of working, relating and socialising. This distribution of technology into the very fabric of our everyday life creates new possibilities, but also raises questions regarding our future relationship with data and the quantified self. By embedding technology into the fabric of our clothes and accessories, it becomes ‘wearable’. Such ‘wearables’ enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis. While the rapid uptake of wearables may offer unique and innovative opportunities, there are also concerns surrounding the high levels of data sharing that come as a consequence of these technologies. As more ‘smart’ devices connect to the Internet, and as technology becomes increasingly available (e.g. via Wi-Fi, Bluetooth), more products, artefacts and things are becoming interconnected. This digital connection of devices is called The ‘Internet of Things’ (IoT). IoT is spreading rapidly, with many traditionally non-online devices becoming increasingly connected; products such as mobile phones, fridges, pedometers, coffee machines, video cameras, cars and clothing. The IoT is growing at a rapid rate with estimates indicating that by 2020 there will be over 25 billion connected things globally. As the number of devices connected to the Internet increases, so too does the amount of data collected and type of information that is stored and potentially shared. The ability to collect massive amounts of data - known as ‘big data’ - can be used to better understand and predict behaviours across all areas of research from societal and economic to environmental and biological. With this kind of information at our disposal, we have a more powerful lens with which to perceive the world, and the resulting insights can be used to design more appropriate products, services and systems. It can however, also be used as a method of surveillance, suppression and coercion by governments or large organisations. This is becoming particularly apparent in advertising that targets audiences based on the individual preferences revealed by the data collected from social media and online devices such as GPS systems or pedometers. This type of technology also provides fertile ground for public debates around future fashion, identity and broader social issues such as culture, politics and the environment. The potential implications of these type of technological interactions via wearables, through and with the IoT, have never been more real or more accessible. But, as highlighted, this interconnectedness also brings with it complex technical, ethical and moral challenges. Data security and the protection of privacy and personal information will become ever more present in current and future ethical and moral debates of the 21st century. This type of technology is also a stepping-stone to a future that includes implantable technology, biotechnologies, interspecies communication and augmented humans (cyborgs). Technologies that live symbiotically and perpetually in our bodies, the built environment and the natural environment are no longer the stuff of science fiction; it is in fact a reality. So, where next?... The works exhibited in Wear Next_ provide a snapshot into the broad spectrum of wearables in design and in development internationally. This exhibition has been curated to serve as a platform for enhanced broader debate around future technology, our mediated future-selves and the evolution of human interactions. As you explore the exhibition, may we ask that you pause and think to yourself, what might we... Wear Next_? WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-report underpins our understanding of falls among people with Parkinson’s (PwP) as they largely happen unwitnessed at home. In this qualitative study, we used an ethnographic approach to investigate which in-home sensors, in which locations, could gather useful data about fall risk. Over six weeks, we observed five independently mobile PwP at high risk of falling, at home. We made field notes about falls (prior events and concerns) and recorded movement with video, Kinect, and wearable sensors. The three women and two men (aged 71 to 79 years) having moderate or severe Parkinson’s were dependent on others and highly sedentary. We most commonly noted balance protection, loss, and restoration during chair transfers, walks across open spaces and through gaps, turns, steps up and down, and tasks in standing (all evident walking between chair and stairs, e.g.). Our unobtrusive sensors were acceptable to participants: they could detect instability during everyday activity at home and potentially guide intervention. Monitoring the route between chair and stairs is likely to give information without invading the privacy of people at high risk of falling, with very limited mobility, who spend most of the day in their sitting rooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, vision-based systems have been deployed in professional sports to track the ball and players to enhance analysis of matches. Due to their unobtrusive nature, vision-based approaches are preferred to wearable sensors (e.g. GPS or RFID sensors) as it does not require players or balls to be instrumented prior to matches. Unfortunately, in continuous team sports where players need to be tracked continuously over long-periods of time (e.g. 35 minutes in field-hockey or 45 minutes in soccer), current vision-based tracking approaches are not reliable enough to provide fully automatic solutions. As such, human intervention is required to fix-up missed or false detections. However, in instances where a human can not intervene due to the sheer amount of data being generated - this data can not be used due to the missing/noisy data. In this paper, we investigate two representations based on raw player detections (and not tracking) which are immune to missed and false detections. Specifically, we show that both team occupancy maps and centroids can be used to detect team activities, while the occupancy maps can be used to retrieve specific team activities. An evaluation on over 8 hours of field hockey data captured at a recent international tournament demonstrates the validity of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ARTIST STATEMENT VIBRANTe 2.0 was inspired by a research project for Parkinson’s disease patients aimed at developing a wearable device to collect relevant data for patients and medical health professionals. Vibrante is a Spanish word that translates to vibrant; literally meaning shaking or vibrations. Vibrante also has a dual meaning including vibrancy, energy, activity, and liveliness. Parkinson’s can be a debilitating disease, but it does not mean the person has to lose energy, activeness or vibrancy. As technology moves from being worn to becoming implantable and completely hidden within the body, the very notion of its physicality becomes difficult to grasp. While the human body hides implantable technology, VIBRANTe 2.0 intentionally hides the human body by making it invisible to reveal the technology stitched within. Wires become veins, delivering lifeblood to the technology inside, allowing it to pulsate and exist, while motherboards become networked hubs by which information is transferred through and within the body, performing functions that mirror and often surpass human performance capabilities. Ultimately, VIBRANTe 2.0 seeks to prompt the viewer to reflect on the potential ramifications of the complete immersion of technology into the human body. CONTEXT Technology is increasingly penetrating all aspects of our environment, and the rapid uptake of devices that live near, on or in our bodies is facilitating radical new ways of working, relating and socialising. Such technology, with its capacity to generate previously unimaginable levels of data, offers the potential to provide life-augmenting levels of interactivity. However, the absorption of technology into the very fabric of clothes, accessories and even bodies begins to dilute boundaries between physical, technological and social spheres, generating genuine ethical and privacy concerns and potentially having implications for human evolution. Embedding technology into the fabric of our clothes, accessories, and even the body enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis and observation of medical conditions. This exhibition aimed to illustrate this shifting landscape through a selection of experimental wearable and interactive works by local, national and international artists and designers. The exhibition will also provide a platform for broader debate around wearable technology, our mediated future-selves and human interactions in this future landscape. EXHIBITION As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: [Please refer to Additional URLs]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les chutes chez les personnes âgées représentent un problème important de santé publique. Des études montrent qu’environ 30 % des personnes âgées de 65 ans et plus chutent chaque année au Canada, entraînant des conséquences néfastes sur les plans individuel, familiale et sociale. Face à une telle situation la vidéosurveillance est une solution efficace assurant la sécurité de ces personnes. À ce jour de nombreux systèmes d’assistance de services à la personne existent. Ces dispositifs permettent à la personne âgée de vivre chez elle tout en assurant sa sécurité par le port d'un capteur. Cependant le port du capteur en permanence par le sujet est peu confortable et contraignant. C'est pourquoi la recherche s’est récemment intéressée à l’utilisation de caméras au lieu de capteurs portables. Le but de ce projet est de démontrer que l'utilisation d'un dispositif de vidéosurveillance peut contribuer à la réduction de ce fléau. Dans ce document nous présentons une approche de détection automatique de chute, basée sur une méthode de suivi 3D du sujet en utilisant une caméra de profondeur (Kinect de Microsoft) positionnée à la verticale du sol. Ce suivi est réalisé en utilisant la silhouette extraite en temps réel avec une approche robuste d’extraction de fond 3D basée sur la variation de profondeur des pixels dans la scène. Cette méthode se fondera sur une initialisation par une capture de la scène sans aucun sujet. Une fois la silhouette extraite, les 10% de la silhouette correspondant à la zone la plus haute de la silhouette (la plus proche de l'objectif de la Kinect) sera analysée en temps réel selon la vitesse et la position de son centre de gravité. Ces critères permettront donc après analyse de détecter la chute, puis d'émettre un signal (courrier ou texto) vers l'individu ou à l’autorité en charge de la personne âgée. Cette méthode a été validée à l’aide de plusieurs vidéos de chutes simulées par un cascadeur. La position de la caméra et son information de profondeur réduisent de façon considérable les risques de fausses alarmes de chute. Positionnée verticalement au sol, la caméra permet donc d'analyser la scène et surtout de procéder au suivi de la silhouette sans occultation majeure, qui conduisent dans certains cas à des fausses alertes. En outre les différents critères de détection de chute, sont des caractéristiques fiables pour différencier la chute d'une personne, d'un accroupissement ou d'une position assise. Néanmoins l'angle de vue de la caméra demeure un problème car il n'est pas assez grand pour couvrir une surface conséquente. Une solution à ce dilemme serait de fixer une lentille sur l'objectif de la Kinect permettant l’élargissement de la zone surveillée.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings