897 resultados para WASTE FORMS
Resumo:
The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.
Resumo:
The viability of small-scale heavy-metal waste immobilization into iron phosphate glasses was investigated. Several waste forms containing different amounts of heavy-ion wastes were evaluated (5%, 10%, 15%, 20%, 26%, 33%, 40% and 50% by mass) and their X-ray diffraction patterns revealed that no crystallization occurred in glasses with waste concentrations up to 26%. The dissolution rates for all of the reported glass compositions (ca. 10-8 g cm-2 min-1) are similar to those reported for the materials most commonly used for waste vitrification. Iron phosphate glasses thus proved to be very useful for the immobilization of heavy-metal wastes, exhibiting good contention and chemical durability comparable to that of borosilicate glasses.
Resumo:
The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.
Resumo:
This introductory brief has been written as a response to a request for information on HIA and waste management, with particular reference to incineration. EU legislation forms the basis for much of Irish waste management policy. Waste Management – Taking Stock and Moving Forward (2004) sets targets for increased prevention and minimisation, encourages reuse and gives preference to recovery and recycling, which is in line with the EU’s Sixth Environmental Action Plan (2002). In the area of waste incineration, the Waste Incineration Directive (2000/76/EC) has been transposed into Irish law and sets operating requirements for the incineration of waste.
Resumo:
The Iowa livestock industry generates large quantities of manure and other organic residues; composed of feces, urine, bedding material, waste feed, dilution water, and mortalities. Often viewed as a waste material, little has been done to characterize and determine the usefulness of this resource. The Iowa Department of Natural Resources initiated the process to assess in detail the manure resource and the potential utilization of this resource through anaerobic digestion coupled with energy recovery. Many of the pieces required to assess the manure resource already exist, albeit in disparate forms and locations. This study began by interpreting and integrating existing Federal, State, ISU studies, and other sources of livestock numbers, housing, and management information. With these data, models were analyzed to determine energy production and economic feasibility of energy recovery using anaerobic digestion facilities on livestock faxms. Having these data individual facilities and clusters that appear economically feasible can be identified specifically through the use of a GIs system for further investigation. Also livestock facilities and clusters of facilities with high methane recovery potential can be the focus of targeted educational programs through Cooperative Extension network and other outreach networks, providing a more intensive counterpoint to broadly based educational efforts.
Resumo:
The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.
Resumo:
This paper analyzes the cost implications of privatization and cooperation in the provision of solid waste services for a sample of small municipalities. In conducting this empirical analysis, a survey is first designed and administered to municipalities in the Spanish region of Aragon, and then an estimation of the determinants of service costs is undertaken, considering the possible endogeneity of delivery choices. Our findings indicate that cooperation is more effective than privatization in saving costs. Both production forms can enable small municipalities to cut costs by exploiting scale economies. However, the fact that inter-municipal cooperation involves lower transaction costs and is less likely to be affected by competition problems would seem to account for the fact that it is a more effective way of reducing costs.
Resumo:
Meeting the needs of both present and future generations forms the foundation of sustainable development. Concern about food demand is increasing alongside the continuously growing population. In the pursuit of food security preventing food waste is one solution avoiding the negative environmental impacts that result from producing food unnecessarily. Packages offer one answer to preventing food waste, as they 1) preserve and protect food, 2) introduce the user to the correct way to handle and use the food and package and 3) allow the user to consume the food in its entirety. This thesis aims to enhance the sustainability of food packages by giving special emphasis to preventing food waste. The focus of this thesis is to assist the packaging designer in being able to take into account the requirements for the sustainability of food packages and to be able to integrate these requirements into the product development process. In addition, life cycle methods that can be used as a tool in the packaging design process or in assessing the sustainability of finished food-packaging combinations are evaluated. The methods of life cycle costing (LCC) and life cycle working environment (LCWE) are briefly discussed. The method of life cycle assessment (LCA) is examined more thoroughly through the lens of the literature review of food-package LCA case studies published in the 21st century in three relevant journals. Based on this review and on experiences learned from conducting LCAs, recommendations are given as to how the LCA practitioner should conduct a food packaging study to make most of the results. Two case studies are presented in this thesis. The first case study relates the results of a life cycle assessment conducted for three food items (cold cut (ham), sliced dark bread (rye) and Soygurt drink) and the alternative packaging options of each. Results of this study show that the packaging constitutes only 1–12 % of the total environmental impacts of the food-packaging combination. The greatest effect is derived from the food itself and the wasted food. Even just a small percentage of wasted food causes more environmental impacts than does the packaging. The second case study presents the results of LCC and LCWE analysis done for fruit and vegetable transport packages. In this thesis, the specific results of the study itself are not the focus, but rather the study methods and scope are analysed based on how these complement the sustainability assessment of food packages. This thesis presents reasons why prevention of food waste should be more thoroughly taken into account in food packaging design. In addition, the task of the packaging designer is facilitated by the requirements of sustainable food packaging, by the methods and step-by-step guidance on how to integrate sustainability issues into the design process, and by the recommendations on how to assess the sustainability of food packages. The intention of this thesis is to express the issues that are important in the field of the food packaging industry. Having recognised and implemented these issues, businesses can better manage the risks that could follow from neglecting these sustainability aspects.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
The aim of the thesis was both to study wooden packaging waste reuse and refining generated in the forestry machine factory environment, and to find alternative wooden packaging waste utilization options in order to create a new operating model which would decrease the overall amount of waste produced. As environmental and waste legislation has become more rigid and companies' own environmental management systems’ requirements and control have increased, companies have had to consider their environmental aspects more carefully. Companies have to take into account alternative ways of reducing waste through an increase in reuse and recycling. A part of this waste is from different forms of packaging. In the metal industry the most heavily used packaging material is wooden packaging, as such material is heavy and the packaging has to be able to bear heavy stress. In the theoretical part of the thesis, the requirements of packaging and packaging waste legislation, as well as environmental management systems governing companies’ processing of their packaging waste, are studied. The theoretical part includes a process study of systems, which direct packaging waste and wooden packaging waste refining. In addition, methods related to the continuous improvement of these processes are introduced. This thesis concentrates on designing and creating a new operating model in relation to wooden packaging waste processing. The main target was to find an efficient model in order to decrease the total amount of wooden packaging waste and to increase refining. The empirical part introduces methods for approaches to wooden packaging waste re-utilization, as well as a description of a new operating model and its impact.
Resumo:
Le présent mémoire a pour objet les formes, les caractéristiques et les défis de la gouvernance des déchets électroniques. L’auteure explore les impactes socioéconomiques et environnementales de divers types d’instruments conçus pour mitiger les risques à la santé humaine et à l’environnement que présentent les produits électroniques en fin de vie, notamment: les traités multilatéraux qui visent à prohiber le transfert des déchets hasardeux au pays en développement, les législations régionales, nationales et provinciales mettant en vigueur des systèmes de recyclage obligatoire des déchets électroniques, ainsi que d’autres initiatives, publics et privées, basées sur le principe de la responsabilité élargie des producteurs (REP). L’objectif de ce travail est de comprendre comment les acteurs impliqués dans le commerce de l’équipement électronique peuvent modeler les systèmes de production, d’usage et du traitement fin de vie des technologies contemporaines pour que ces dernières puissent continuer à faire élever les standards de vie et à avancer le développement des communautés humaines, en respectant simultanément le principe international de l’équité globale, l’environnement naturel et la qualité de vie des générations futures.
Resumo:
This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.