46 resultados para WAF1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O câncer de colo do útero é o terceiro tipo de câncer mais frequente em mulheres no mundo, e a infecção persistente pelo papilomavirus humano (HPV) oncogênico é condição necessária, mas não suficiente para seu desenvolvimento. As oncoproteínas virais E6 e E7 interferem direta ou indiretamente na ação de várias proteínas celulares. Entretanto, as variantes proteicas, resultantes de polimorfismos genéticos, podem apresentar comportamento distinto mediante a infecção pelo HPV. O objetivo deste estudo foi avaliar possíveis associações entre polimorfismos nos genes TP53 (p53 PIN3, p53 72C>G) e p21 (p21 31C>A) e o desenvolvimento de neoplasias cervicais, considerando os níveis de expressão das proteínas p53, p21, p16 e ciclina D1, e fatores de risco clássicos para o câncer cervical. Foram selecionadas 466 mulheres residentes no Rio de Janeiro, 281 com diagnóstico histopatológico de neoplasia cervical de baixo (LSIL) e alto grau (HSIL) e câncer (grupo de casos) e 185 sem história atual ou pregressa de alteração citológica do colo uterino (grupo controle). A técnica de PCR-RFLP (reação em cadeia da polimerase - polimorfismo de comprimento de fragmento de restrição), foi empregada na análise dos polimorfismos p53 72C>G e p21 31C>A, usando as enzimas de restrição BstUI e BsmaI, respectivamente. A avaliação do polimorfismo p53 PIN3 (duplicação de 16 pb) foi feita por meio da análise eletroforética direta dos produtos de PCR. A expressão das proteínas p53, p21, p16, ciclina D1 e Ki-67 e a pesquisa de anticorpos anti-HPV 16 e HPV pool foram avaliadas por imunohistoquímica (Tissue Microarray - TMA) em 196 biópsias do grupo de casos. O grupo controle se mostrou em equilíbrio de Hardy-Weinberg em relação aos três polimorfismos avaliados. As distribuições genotípicas e alélicas relativas a p53 PIN3 e p53 72C>G nos grupos controles e de casos não apresentaram diferenças significativas, embora o genótipo p53 72CC tenha aumentado o risco atribuído ao uso de contraceptivos das pacientes apresentarem lesões mais severas (OR=4,33; IC 95%=1,19-15,83). O genótipo p21 31CA(Ser/Arg) conferiu proteção ao desenvolvimento de HSIL ou câncer (OR=0,61, IC 95%=0,39-0,97), e modificou o efeito de fatores de risco associados à severidade das lesões. A interação multiplicativa de alelos mostrou que a combinação p53 PIN3A1, p53 72C(Pro) e p21 31C(Ser), representou risco (OR=1,67, IC95%=1,03-2,72) e a combinação p53 PIN3A1, p53 72C(Pro) e p21 31A(Arg) conferiu efeito protetor (OR=0,26, IC95%=0,08-0,78) para o desenvolvimento de HSIL e câncer cervical. Observou-se correlação positiva da expressão de p16 e p21 e negativa da ciclina D1 com o grau da lesão. A distribuição epitelial de p16, Ki-67, p21 e p53 se mostrou associada à severidade da lesão. Os polimorfismos analisados não apresentaram associação com a expressão dos biomarcadores ou positividade para HPV. Nossos resultados sugerem a importância do polimorfismo p21 31C>A para o desenvolvimento das neoplasias cervicais e ausência de correlação dos polimorfismos p53 PIN3 e p53 72C>G com a carcinogênese cervical, embora alguns genótipos tenham se comportado como modificadores de risco. Nossos resultados de TMA corroboram o potencial de uso de biomarcadores do ciclo celular para diferenciar as lesões precursoras do câncer cervical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p21(Waf1/Cip1), best known as a broad-specificity inhibitor of cyclin/cyclin-dependent kinase complexes, can interact with various target proteins, and this ability relies on its structural plasticity. Therefore, studies on the structural properties of p(21) are very important to understand its structure-function relationship. However, detailed studies on its secondary structure and biophysical properties have been comparatively sparse. A human p(21) gene was cloned into the temperature expression vector pBV220 and transformed into Escherichia coli strain JM109.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylases ( HDACs) 1 and 2 share a high degree of homology and coexist within the same protein complexes. Despite their close association, each possesses unique functions. We show that the upregulation of HDAC2 in colorectal cancer occurred early at the polyp stage, was more robust and occurred more frequently than HDAC1. Similarly, while the expression of HDACs1 and 2 were increased in cervical dysplasia and invasive carcinoma, HDAC2 expression showed a clear demarcation of high-intensity staining at the transition region of dysplasia compared to HDAC1. Upon HDAC2 knockdown, cells displayed an increased number of cellular extensions reminiscent of cell differentiation. There was also an increase in apoptosis, associated with increased p21(Cip1/WAF1) expression that was independent of p53. These results suggest that HDACs, especially HDAC2, are important enzymes involved in the early events of carcinogenesis, making them candidate markers for tumor progression and targets for cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with ? radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell cycle inhibitor p21/WAF1/Cip1 is expressed in many cell types and is regulated by p53-dependent and p53-independent mechanisms. p21 is an important regulator of hepatocyte cell cycle, differentiation, and liver development, but little is known about the regulation of its synthesis in hepatocytes. We report herein that the p21 gene is constitutively expressed in human hepatoma HepG2 cells. Deletion analysis of the p21 promoter showed that it contains a distal (positions −2,300/−210) and a proximal (positions −124 to −61) region that act synergistically to achieve high levels of constitutive expression. The proximal region that consists of multiple Sp1 binding sites is essential for constitutive p21 promoter activity in hepatocytes. This region also mediates the transcriptional activation of the p21 promoter by members of the Smad family of proteins, which play important role in the transduction of extracellular signals such as transforming growth factor β, activin, etc. Constitutive expression of p21 was severely reduced by a C-terminally truncated form of Smad4 that was shown previously to block signaling through Smads. Smad3/4 and to a much lesser extent Smad2/4 caused high levels of transcriptional activation of the p21 promoter. Transactivation was compromised by N- or C-terminally truncated forms of Smad3. By using Gal4-Sp1 fusion proteins, we show that Smad proteins can activate gene transcription via functional interactions with the ubiquitous factor Sp1. These data demonstrate that Smad proteins and Sp1 participate in the constitutive or inducible expression of the p21 gene in hepatic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 → S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the role of the cdk inhibitor protein p21Cip-1/WAF1/MDA6 (p21) in the ability of MAPK pathway inhibition to enhance radiation-induced apoptosis in A431 squamous carcinoma cells. In carcinoma cells, ionizing radiation (2 Gy) caused both primary (0–10 min) and secondary (90–240 min) activations of the MAPK pathway. Radiation induced p21 protein expression in A431 cells within 6 h via secondary activation of the MAPK pathway. Within 6 h, radiation weakly enhanced the proportion of cells in G1 that were p21 and MAPK dependent, whereas the elevation of cells present in G2/M at this time was independent of either p21 expression or MAPK inhibition. Inhibition of the MAPK pathway increased the proportion of irradiated cells in G2/M phase 24–48 h after irradiation and enhanced radiation-induced apoptosis. This correlated with elevated Cdc2 tyrosine 15 phosphorylation, decreased Cdc2 activity, and decreased Cdc25C protein levels. Caffeine treatment or removal of MEK1/2 inhibitors from cells 6 h after irradiation reduced the proportion of cells present in G2/M phase at 24 h and abolished the ability of MAPK inhibition to potentiate radiation-induced apoptosis. These data argue that MAPK signaling plays an important role in the progression/release of cells through G2/M phase after radiation exposure and that an impairment of this progression/release enhances radiation-induced apoptosis. Surprisingly, the ability of irradiation/MAPK inhibition to increase the proportion of cells in G2/M at 24 h was found to be dependent on basal p21 expression. Transient inhibition of basal p21 expression increased the control level of apoptosis as well as the abilities of both radiation and MEK1/2 inhibitors to cause apoptosis. In addition, loss of basal p21 expression significantly reduced the capacity of MAPK inhibition to potentiate radiation-induced apoptosis. Collectively, our data argue that MAPK signaling and p21 can regulate cell cycle checkpoint control in carcinoma cells at the G1/S transition shortly after exposure to radiation. In contrast, inhibition of MAPK increases the proportion of irradiated cells in G2/M, and basal expression of p21 is required to maintain this effect. Our data suggest that basal and radiation-stimulated p21 may play different roles in regulating cell cycle progression that affect cell survival after radiation exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) inhibits proliferation both in vitro and in vivo, and overexpression of p21 in normal and tumor cell lines results in cell cycle arrest. In contrast, ectopic expression of Myc alleviates G1 cell cycle arrest. Recent studies showed that Myc can repress p21 transcription, thereby overriding a p21-mediated cell cycle checkpoint. We found that activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen in mouse cells resulted in suppression of endogenous p21 transcription. This effect was observed in the absence of de novo protein synthesis and was independent of histone deacetylase activity. In transient transfection studies, Myc effectively repressed p21 promoter constructs containing only 119 bp of sequence upstream of the transcription start site. This region contains multiple Sp1-binding sites and a potential initiator element, but no canonical Myc DNA-binding sites. Deletion of the potential initiator element does not affect repression of the p21 promoter by c-Myc. Coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrate that c-Myc may form complexes with Sp1/Sp3. We found that the central region of c-Myc interacts with the zinc finger domain of Sp1. Because Sp1 is required for p21 transcription, it is possible that Myc may down-regulate p21 transcription, at least in part, by sequestering Sp1. Repression of the p21 promoter may contribute to the ability of c-Myc to promote cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The WAF1/CIP1 protein has been identified as a downstream mediator of the tumor suppressor p53 in regulating cell cycle progression through a G1-phase check-point. Recent work has implicated the functional status of p53 as a critical determinant in the apoptotic response of certain cell lines to DNA damaging agents. By using human T-cell leukemia virus type I-transformed lymphoid cell lines that differ in their level and function of wild-type p53, we investigated the induction of WAF1/CIP1 and apoptosis after exposure to Adriamycin, a genotoxic agent. We found that regardless of the p53 status in these cell lines, WAF1/CIP1 RNA was rapidly induced in response to Adriamycin treatment. An elevated level of WAF1/CIP1 protein was observed as well. Additionally, we demonstrated that apoptosis was induced in all cell lines analyzed despite some having functionally inactive p53 protein. Our data suggest that a p53-independent pathway may play a role in the apoptotic response observed in some cell lines after exposure to DNA damaging agents.