983 resultados para W. Salmon
Resumo:
vol. XII. Pathology of the acute respiratory diseases, and of gas gangrene following war wounds, by G.R. Callender and J.F. Coupal. 1929- vol. XIII. pt. 1. Physical reconstruction and vocational education, by A.G. Crane. pt. 2. The Army nurse corps, by Julia C. Stimson. 1927- vol. XIV. Medical aspects of gas warfare, by W.D. Bancroft, H.C. Bradley [and others] 1926.- vol. XV. Statistics, pt. 1. Army anthropology, based on observations made on draft recruits, 1917-1918, and on veterans at demobilization, 1919, by C.B. Davenport and A.G. Love. 1921. pt. 2. Medical and casualty statistics based on the medical records of the United States Army, April 1, 1917, to December 31, 1919, inclusive, by A.G. Love. 1925.
Resumo:
The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (± SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response. © 2008 Springer Science+Business Media, LLC.
Resumo:
An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.
Resumo:
Sediment sampling was used to evaluate chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) spawning habitat quality in the South Fork Trinity River (SFTR) basin. Sediment samples were collected using a McNeil-type sampler and wet sieved through a series of Tyler screens (25.00 mm, 12.50 mm, 6.30 mm, 3.35 mm, 1.00 mm, and 0.85 mm). Fines (particles < 0.85 mm) were determined after a l0-minute settling period in Imhoff cones. Thirteen stations were sampled in the SFTR basin: five stations were located in mainstem SFTR between rk 2.1 and 118.5, 2 stations each were located in EF of the SFTR, Grouse Creek, and Madden Creek, and one station each was located in Eltapom and Hayfork Creeks. Sample means for fines(particles < 0.85 mm) fer SFTR stations ranged between 14.4 and 19.4%; tributary station sample mean fines ranged between 3.4 and 19.4%. Decreased egg survival would be expected at 4 of 5 mainstem SFTR stations and at one station in EF of SFTR and Grouse Creek where fines content exceed 15%. Small gravel/sand content measured at all stations were high, and exceed levels associated with reduced sac fry emergence rates. Reduction of egg survival or sac fry emergence due to sedimentation in spawning gravels could lead to reduced juvenile production from the South Fork Trinity River. (PDF contains 18 pages.)
Resumo:
The authors provide an extensive annotated bibliography to a full list of species occurring in Scotland, to highlight what is known about them and to indicate potential areas for further research. The list of references brings together published research papers and numerous unpublished theses and reports, including experimental and laboratory studies conducted in Scotland, although some may not have unique application to the fish fauna in Scottish waters. There has been no attempt to include references that are made incidentally in the general literature intended for naturalists.
Resumo:
The aim of this study was to investigate the historical catch record from the Castle Fishery on the River Derwent over the period 1923 - 1989, to determine if changes had taken place in the composition of the catch and to examine the influence of flow on the performance of the fishery. The River Derwent is situated in West Cumbria, North West England. It flows from its source on Scafell Pike (NGR NY 229 089) westwards discharging into the Irish sea at Workington, a distance of 52 km. Over its length it receives water from an additional 214 km of stream, 5 large lakes and approximately 30 small tarns. The catchment drains a total area of 663 km2. The study concludes that through the time period there was considerable variation in catch between years. The trend was for the catch to increase steadily over the period 1923 - 1958, declining rapidly in 1959, after which catches increased steadily reaching a peak in the mid-sixties, before declining towards the end of the decade. During the seventies and eighties catches remained relatively stable at between 300 - 600 salmon per year until 1988 when over 2000 salmon were reported caught, the greatest number in any year over the study period.
Resumo:
Eight streams from the North West of England were stocked with Atlantic salmon (Salmo salar L.) fed fry at densities ranging from 1 to 4/m2 over a period of up to three years to evaluate survival to the end of the first an d second growing periods and hence assess the value of stocking as a management practice. Survival to the end of the first growin g period (mean duration of 108 days) was found to vary between 7.8 and 41.3% with a mean of 22% and CV of 0.44. Survival from the end of the first growing period to the end of the second growing period (mean duration of 384 days) ranged from 19.9 to 34.1% with a mean of 26.3% and CV of 0.21. Survival was found to be positively related to 0+ trout density (P < 0.05) and negatively related to altitude (P < 0.05). A comparison of the raw survival data (non standardised with respect to duration of experiments) with that from other studies in relation to stocking densities revealed a negative relationship between fry survival and stocking density (P < 0.05). Densities in excess of 5/m2 tended to result in lower levels of survival. Post stocking fry dispersal patterns were examined for the 1991 data. On average 86.7% of the number of fry surviving remained within the stocked zone by the end of the first growing period. With the exception of one stream there was little in the way of dispersal beyond the stocked zone. The dispersal pattern approximated to the normal distribution (P < 0.05). It was estimated that stocking can result in a net gain of fish to a river system compared with natural productivity, however the numerical significance of this gain and its cost effectiveness need to be determined on a river specific basis.
Resumo:
This paper deals with the development and use of biological reference points for salmon conservation on the River Lune, England. The Lune supports recreational and net fisheries with annual catches in the region of 1,000 and 1356 salmon respectively. Using models transported from other river systems, biological reference points exclusive to the Lune were developed; specifically the number of eggs deposited and carrying capacity estimates for age 0+ and 1+ parr. The conservation limit was estimated at 11.9 million eggs and between 1989 and 1998 was exceeded in two years. Comparison of juvenile salmon densities in 1991 and 1997 with estimates of carrying capacity indicated that 0+ and 1+ parr densities were at around 60 % of carrying capacity and may relate to the number of eggs deposited in 1990 and 1996 being approximately 70% of the target value. The paper discusses the management actions taken in order to ensure that the management target of the conservation limit being met four years out of five is delivered. It also discusses the balance between conservation and exploitation and the socio-economic decisions made in order to ensure parity of impacts on the rod and net fisheries. The regulations have been enforced since 1999 and the paper concludes with an assessment of the actions taken to deliver the management targets, over the last five years.
Resumo:
A case study of Atlantic Salmon runs into the R. Tyvi (S. Wales) is presented. Radio tracking of over 200 salmon in 1988 and 1989 has demonstrated that flow is an important factor in modifying both run timing and migratory success. Entry of salmon into the river is typically in response to flow events, and periods of low falling flows delay entry and may directly result in reduced runs into the river. Delayed entry may also increase the proportion of the run migrating after the end of both rod and net fishing seasons. The implications of these results for net and rod catch and catch/effort data are discussed, using both statutory reported catch data and data from specific catch/effort studies. Flow is demonstrated to be a dominant factor in determining the within-season distribution of rod catch and catch/effort during low-flow years. Estuarial seine net catch and catch/effort tend to be controlled more by time of return than by flow although low flows may delay runs. Annual reported rod catch is correlated with flow, which controls in season availability, catchability and consequently the amount of fishing effort. Use of catch or catch/effort data should take account of inter-year variations in flow and other environmental factors. Although catch and catch/effort are valuable indicators of fishery performance, they are inadequate to represent changing stock levels.
Resumo:
We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.
Resumo:
Age and growth estimates for salmon sharks (Lamna ditropis) in the eastern North Pacific were derived from 182 vertebral centra collected from sharks ranging in length from 62.2 to 213.4 cm pre-caudal length (PCL) and compared to previously published age and growth data for salmon sharks in the western North Pacific. Eastern North Pacific female and male salmon sharks were aged up to 20 and 17 years, respectively. Relative marginal increment (RMI) analysis showed that postnatal rings form annually between January and March. Von Bertalanffy growth parameters derived from vertebral length-at-age data are L∞ =207.4 cm PCL, k=0.17/yr, and t0=−2.3 years for females (n=166), and L∞ =182.8 cm PCL, k=0.23/yr , and t0=−1.9 years for males (n=16). Age at maturity was estimated to range from six to nine years for females (median pre-caudal length of 164.7 cm PCL) and from three to five years old for males (median precaudal length of 124.0 cm PCL). Weight-length relationships for females and males in the eastern North Pacific are W=8.2 × 10_05 × L2.759 –06 × L3.383 (r2 =0.99) and W=3.2 × 10 (r2 =0.99), respectively. Our results show that female and male salmon sharks in the eastern North Pacific possess a faster growth rate, reach sexual maturity earlier, and attain greater weight-at-length than their same-sex counterparts living in the western North Pacific.
Resumo:
This is the episodic variations in stream water chemistry associated with acid rainfall and run-off and the effect on aquatic ecosystems, with particular reference to fish populations in North West England produced by the North West Water Authority in 1985. This report looks at the biological, physical and chemical information collected over a five year period from over 100 sites on upland streams in the North West Region of which drained rocks of low buffering capacity. In both Lake District and South Pennine sites striking differences were found between the composition of invertebrate communities inhabiting acid-stressed and less acid-stressed streams. Electric fishing surveys showed that acidic streams (geometric mean pH <5.5) generally had abnormally low densities of salmonids ( < 0 .2m2) and that 0+ fish were very few or absent. The latter indicates recruitment failure. Salmon were more sensitive than trout to low pH.
Resumo:
Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.
Resumo:
Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.