996 resultados para W-operators
Resumo:
This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
"August 1969."
Resumo:
"May 1971."
Resumo:
"May 1971."
Resumo:
Includes index.
Resumo:
For an operator T in the class B-n(), introduced by Cowen and Douglas, the simultaneous unitary equivalence class of the curvature and the covariant derivatives up to a certain order of the corresponding bundle E-T determine the unitary equivalence class of the operator T. In a subsequent paper, the authors ask if the simultaneous unitary equivalence class of the curvature and these covariant derivatives are necessary to determine the unitary equivalence class of the operator T is an element of B-n(). Here we show that some of the covariant derivatives are necessary. Our examples consist of homogeneous operators in B-n(). For homogeneous operators, the simultaneous unitary equivalence class of the curvature and all its covariant derivatives at any point w in the unit disc are determined from the simultaneous unitary equivalence class at 0. This shows that it is enough to calculate all the invariants and compare them at just one point, say 0. These calculations are then carried out in number of examples. One of our main results is that the curvature along with its covariant derivative of order (0, 1) at 0 determines the equivalence class of generic homogeneous Hermitian holomorphic vector bundles over the unit disc.
Resumo:
Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras.
Resumo:
The curvature (T)(w) of a contraction T in the Cowen-Douglas class B-1() is bounded above by the curvature (S*)(w) of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this paper, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E-T corresponding to the operator T in the Cowen-Douglas class B-1() which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the class B-1() for a bounded domain in C-m.
Resumo:
The Mössbauer technique has been used to study the nuclear hyperfine interactions and lifetimes in W182 (2+ state) and W183 (3/2- and 5/2- states) with the following results: g(5/2-)/g(2+) = 1.40 ± 0.04; g(3/2- = -0.07 ± 0.07; Q(5/2-)/Q(2+) = 0.94 ± 0.04; T1/2(3/2-) = 0.184 ± 0.005 nsec; T1/2(5/2-) >̰ 0.7 nsec. These quantities are discussed in terms of a rotation-particle interaction in W183 due to Coriolis coupling. From the measured quantities and additional information on γ-ray transition intensities magnetic single-particle matrix elements are derived. It is inferred from these that the two effective g-factors, resulting from the Nilsson-model calculation of the single-particle matrix elements for the spin operators ŝz and ŝ+, are not equal, consistent with a proposal of Bochnacki and Ogaza.
The internal magnetic fields at the tungsten nucleus were determined for substitutional solid solutions of tungsten in iron, cobalt, and nickel. With g(2+) = 0.24 the results are: |Heff(W-Fe)| = 715 ± 10 kG; |Heff(W-Co)| = 360 ± 10 kG; |Heff(W-Ni)| = 90 ± 25 kG. The electric field gradients at the tungsten nucleus were determined for WS2 and WO3. With Q(2+) = -1.81b the results are: for WS2, eq = -(1.86 ± 0.05) 1018 V/cm2; for WO3, eq = (1.54 ± 0.04) 1018 V/cm2 and ƞ = 0.63 ± 0.02.
The 5/2- state of Pt195 has also been studied with the Mössbauer technique, and the g-factor of this state has been determined to be -0.41 ± 0.03. The following magnetic fields at the Pt nucleus were found: in an Fe lattice, 1.19 ± 0.04 MG; in a Co lattice, 0.86 ± 0.03 MG; and in a Ni lattice, 0.36 ± 0.04 MG. Isomeric shifts have been detected in a number of compounds and alloys and have been interpreted to imply that the mean square radius of the Pt195 nucleus in the first-excited state is smaller than in the ground state.
Resumo:
Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.
Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.
Resumo:
Belief merging operators combine multiple belief bases (a profile) into a collective one. When the conjunction of belief bases is consistent, all the operators agree on the result. However, if the conjunction of belief bases is inconsistent, the results vary between operators. There is no formal manner to measure the results and decide on which operator to select. So, in this paper we propose to evaluate the result of merging operators by using three ordering relations (fairness, satisfaction and strength) over operators for a given profile. Moreover, a relation of conformity over operators is introduced in order to classify how well the operator conforms to the definition of a merging operator. By using the four proposed relations we provide a comparison of some classical merging operators and evaluate the results for some specific profiles.
Resumo:
In this paper, we compare merging operators in possibilistic logic. We rst propose an approach to evaluating the discriminating power of a merging operator. After that, we analyze the computational complexity of existing possibilistic merging operators. Finally, we consider the compatibility of possibilistic merging operators with propositional merging operators.