394 resultados para Vorticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface flows of a rotational fluid past a two-dimensional semi-infinite body are considered. The fluid is assumed to be inviscid, incompressible, and of finite depth. A boundary integral method is used to solve the problem for the case where the free surface meets the body at a stagnation point. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterized by a train of waves upstream. It is shown numerically that the amplitude of these waves increases as each of the Froude number, vorticity and height of the body above the bottom increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free surface flow of a finite depth fluid past a semi-infinite body is considered. The fluid is assumed to have constant vorticity throughout and the free surface is assumed to attach smoothly to the front face of the body. Numerical solutions are found using a boundary integral method in the physical plane and it is shown that solutions exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Vorticity is included in the flow and it is shown that the behaviour of the solutions is qualitatively the same as that found in the problem described above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the singular surface theory, an expression for the jump in vorticity across a shock wave of arbitrary shape propagating in a uniform, perfect fluid occupying the space-time of special relativity, has been derived. It has been shown that the jump in vorticity across a shock of given strength and curvature depends only on the velocity of the medium ahead of the shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a single bubble with a single vortex ring in water has been studied experimentally. Measurements of both the bubble dynamics and vorticity dynamics have been done to help understand the two-way coupled problem. The circulation strength of the vortex ring (Gamma) has been systematically varied, while keeping the bubble diameter (D-b) constant, with the bubble volume to vortex core volume ratio (V-R) also kept fixed at about 0.1. The other important parameter in the problem is a Weber number based on the vortex ring strength. (We = 0.87 rho(Gamma/2 pi a)(2)/(sigma/D-b); a = vortex core radius, sigma = surface tension), which is varied over a large range, We = 3-406. The interaction between the bubble and ring for each of the We cases broadly falls into four stages. Stage I is before capture of the bubble by the ring where the bubble is drawn into the low-pressure vortex core, while in stage II the bubble is stretched in the azimuthal direction within the ring and gradually broken up into a number of smaller bubbles. Following this, in stage III the bubble break-up is complete and the resulting smaller bubbles slowly move around the core, and finally in stage IV the bubbles escape. Apart from the effect of the ring on the bubble, the bubble is also shown to significantly affect the vortex ring, especially at low We (We similar to 3). In these low-We cases, the convection speed drops significantly compared to the base case without a bubble, while the core appears to fragment with a resultant large decrease in enstrophy by about 50 %. In the higher-We cases (We > 100), there are some differences in convection speed and enstrophy, but the effects are relatively small. The most dramatic effects of the bubble on the ring are found for thicker core rings at low We (We similar to 3) with the vortex ring almost stopping after interacting with the bubble, and the core fragmenting into two parts. The present idealized experiments exhibit many phenomena also seen in bubbly turbulent flows such as reduction in enstrophy, suppression of structures, enhancement of energy at small scales and reduction in energy at large scales. These similarities suggest that results from the present experiments can be helpful in better understanding interactions of bubbles with eddies in turbulent flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed numerical experiments on a one-dimensional elastic solid oscillating in a two-dimensional viscous incompressible fluid with the intent of discerning the interplay of vorticity and elastodynamics in flapping wing propulsion. Perhaps for the first time, we have established the role of foil deflection topology and its influence on vorticity generation, through spatially and temporally evolving foil slope and curvature. Though the frequency of oscillation of the foil has a definite role, it is the phase relation between foil slope and pressure that determines thrust or drag. Similarly, the phase difference between flapping velocity, and pressure and inertial forces, determine the power input to the foil, and in turn drives propulsive efficiency. At low frequencies of oscillation, the sympathetic slope and curvature of deformation of the foil allow generation of leading-edge vortices that do not separate; they cause substantial rise in pressure between the leading edge and mid-chord. The circulatory component of pressure is determined primarily by the leading-edge vortex and therefore thrust too is predominantly circulatory in origin at low frequencies. In the intermediate and high-frequency range, thrust and drag on the foil spatially alternate and non-circulatory forces dominate over circulatory and viscous forces. For the mass ratios we simulated, thrust due to flapping varies quadratically as a function of Strouhal number or trailing-edge flapping velocity; further, the trailing edge flapping velocities peak at the same set of frequencies where the thrust is also a maximum. Propulsive efficiency, on the other hand, is roughly a mirror image of the thrust variation with respect to Strouhal number. Given that most instances of flapping propulsion in nature are primarily through distributed muscular actuation that enables precise control of deformation shape, leading to high thrust and efficiency, the results presented here are pointers towards understanding some of the mechanisms that drive thrust and propulsive efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.