965 resultados para Vortices in fluids
Resumo:
Experiments were conducted with two, smooth hills, lying well within the boundary layer over a flat plate mounted in a wind tunnel. One hill was shallow, with peak height 1.5 mm and width 50 mm; the other, steep, 3 mm high and 30 mm wide. Since the hills occupied one-half of the tunnel span, streamwise vorticity formed near the hills' edge. At a freestream speed of 3.5 m/s, streaks formed with inflectional wall-normal and spanwise velocity profiles but without effecting transition. Transition, observed at 7.5 m/s, took different routes with the two hills. With the steep hill, streamwise velocity signals exhibited the passage of a wave packet which intensified before breakdown to turbulence. With the shallow hill there was a broad range of frequencies present immediately downstream of the hill. These fluctuations grew continuously and transition occurred within a shorter distance. Since the size of the streamwise vorticity generated at the hill edge is of the order of the hill height, the shallow hill generates vorticity closer to the wall and supports an earlier transition, whereas the steep hill creates a thicker vortex and associated streaks which exhibit oscillations due to their own instability as an additional precursor stage before transition.
Resumo:
Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T-c superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T-c in YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bilayers are observed to be much lower than in the YBa2Cu3O7-delta/La0.7Sr0.3MnO3 ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.
Resumo:
Current analytical work on the effect of convection on the late stages of spinodal decomposition in liquids is briefly described. The morphology formed during the spinodal decomposition process depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport has a significant effect on the scaling laws in the late-stage coarsening of droplets in translational or shear flows. In addition, convective transport could result in an attractive interaction between non-Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near-symmetric quench was analysed using an area distribution function, which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to time t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.
Resumo:
Current analytical work on the effect of convection and viscoelasticity on the early and late stages of spinodal decomposition is briefly described. In the early stages, the effect of viscoelastic stresses was analysed using a simple Maxwell model for the stress, which was incorporated in the Langevin equation for the momentum field. The viscoelastic stresses are found to enhance the rate of decomposition. In the late stages, the pattern formed depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport does not have a significant effect on the growth of a single droplet, but it does result in an attractive interaction between non - Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near symmetric quench was analysed using an 'area distribution function', which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.
Resumo:
We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross-Pitaevskii equation, which is the Langevin equation for the Bose-Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.
Resumo:
Vortex reconnections plays an important role in the turbulent flows associated with the superfluids. To understand the dynamics, we examine the reconnections of vortex rings in the superfluids of dilute atomic gases confined in trapping potentials using Gross-Petaevskii equation. Further more we study the reconnection dynamics of coreless vortex rings, where one of the species can act as a tracer.
Resumo:
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory, with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schrodinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of the work was to investigate the effect of compliant surfaces on the receptivity and bypass transition of a boundary layer. Hot wire measurements in the pre-transitional and transitional boundary layers on nine different compliant and one rigid surface with identical geometries were made. The experiments were conducted in air and the compliant surfaces were manufactured from gelatine covered by a 10 lm protective PVC film. The laminar boundary layer profiles and growth rate results were the same for all the surfaces. However, the receptivity of the laminar boundary layer to freestream disturbances increased close to the leading edge of each compliant surface. Further downstream the majority of the compliant surfaces were successful in reducing the receptivity to a value below that for the rigid surface. The transition onset position on the compliant surfaces ranged from 3% downstream to 20% upstream of the rigid surface position. It was concluded that compliant surfaces with optimum properties can reduce receptivity and delay transition.
Resumo:
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrodinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the
Resumo:
Nous proposons une nouvelle méthode pour quantifier la vorticité intracardiaque (vortographie Doppler), basée sur l’imagerie Doppler conventionnelle. Afin de caractériser les vortex, nous utilisons un indice dénommé « Blood Vortex Signature (BVS) » (Signature Tourbillonnaire Sanguine) obtenu par l’application d’un filtre par noyau basé sur la covariance. La validation de l’indice BVS mesuré par vortographie Doppler a été réalisée à partir de champs Doppler issus de simulations et d’expériences in vitro. Des résultats préliminaires obtenus chez des sujets sains et des patients atteints de complications cardiaques sont également présentés dans ce mémoire. Des corrélations significatives ont été observées entre la vorticité estimée par vortographie Doppler et la méthode de référence (in silico: r2 = 0.98, in vitro: r2 = 0.86). Nos résultats suggèrent que la vortographie Doppler est une technique d’échographie cardiaque prometteuse pour quantifier les vortex intracardiaques. Cet outil d’évaluation pourrait être aisément appliqué en routine clinique pour détecter la présence d’une insuffisance ventriculaire et évaluer la fonction diastolique par échocardiographie Doppler.
Magnetic relaxation and quantum tunneling of vortices in polycristalline Hg0.8Tl0.2Ba2Ca2Cu3O8+sigma
Resumo:
An analytical dispersion relation is derived for linear perturbations to a Rankine vortex governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region of uniform anomalous surface temperature evolving under quasi-geostrophic dynamics with uniform interior potential vorticity. The dispersion relation is analysed in detail and compared to the more familiar dispersion relation for a perturbed Rankine vortex governed by the Euler equations. The results are successfully verified against numerical simulations of the full equations. The dispersion relation is relevant to problems including wave propagation on surface temperature fronts and the stability of vortices in quasi-geostrophic turbulence.