999 resultados para Vortex flow
Resumo:
A small disturbance in the axisymmetric, bathtub-like flow with strong vorticity is considered and the asymptotic representation of the solution is found. It is shown that if the disturbance is smaller than a certain critical scale, the conventional strong vortex approximation cannot describe the field generated by the disturbance not only in the vicinity of the disturbance but also at the distances much larger than the critical scale. (C) 2001 American Institute of Physics.
Resumo:
The purification of B-phycoerythrin from a concentrated extract of disrupted Porphyridium cruentum cells was carried out using a new vortex flow reactor design for protein purification. The reactor behaved as an expanded bed in the laminar vortices flow regime where the Streamline DEAE resin was expanded by the axial flow and stabilized by the vortex flow. After the broth culture was centrifuged and resuspended in the adsorption buffer, the concentrated extract of disrupted cells was directly loaded into the vortex flow reactor. The purification of B-phycoerythrin was carried out in two steps: adsorption in the expanded bed and elution from the settled bed. 142.0 mg of B-phycoerythrin was eluted representing a total recovery yield of 86.6%. Prior to B-phycoerythrin purification, the protein adsorption of the vortex flow reactor was characterized through hydrodynamic studies and a dynamic capacity measurement using a standard protein.
Resumo:
Numerical experiments using a finite difference method were carried out to determine the motion of axisymmetric Taylor vortices for narrow-gap Taylor vortex flow. When a pressure gradient is imposed on the flow the vortices are observed to move with an axial speed of 1.16 +/- 0.005 times the mean axial flow velocity. The method of Brenner was used to calculate the long-time axial spread of material in the flow. For flows where there is no pressure gradient, the axial dispersion scales with the square root of the molecular diffusion, in agreement with the results of Rosen-bluth et al. for high Peclet number dispersion in spatially periodic flows with a roll structure. When a pressure gradient is imposed the dispersion increases by an amount approximately equal to 6.5 x 10(-4) (W) over bar(2)d(2)/D-m, where (W) over bar is the average axial velocity in the annulus, analogous to Taylor dispersion for laminar flow in an empty tube.
Resumo:
We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical rotation speed (ω[subscript c]), Taylor vortices appear in this system. Small air bubbles are introduced into the gap through a needle connected to a syringe pump. These are then captured in the cores of the vortices (core bubble) and in the outflow regions along the inner cylinder (wall bubble). The flow field is measured with a two-dimensional particle imaging velocimetry (PIV) system. The motion of the bubbles is monitored by using a high speed video camera. It has been found that, if the core bubbles are all of the same size, a bubble ring forms at the center of the vortex such that bubbles are azimuthally uniformly distributed. There is a saturation number (N[subscript s]) of bubbles in the ring, such that the addition of one more bubble leads eventually to a coalescence and a subsequent complicated evolution. Ns increases with increasing rotation speed and decreasing bubble size. For bubbles of non-uniform size, small bubbles and large bubbles in nearly the same orbit can be observed to cross due to their different circulating speeds. The wall bubbles, however, do not become uniformly distributed, but instead form short bubble-chains which might eventually evolve into large bubbles. The motion of droplets and particles in a Taylor vortex was also investigated. As with bubbles, droplets and particles align into a ring structure at low rotation speeds, but the saturation number is much smaller. Moreover, at high rotation speeds, droplets and particles exhibit a characteristic periodic oscillation in the axial, radial and tangential directions due to their inertia. In addition, experiments with non-spherical particles show that they behave rather similarly. This study provides a better understanding of particulate behavior in vortex flow structures.
Resumo:
The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry.
Resumo:
The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.
Resumo:
Efficient and safe heparin anticoagulation has remained a problem for continuous renal replacement therapies and intermittent hemodialysis for patients with acute renal failure. To make heparin therapy safer for the patient with acute renal failure at high risk of bleeding, we have proposed regional heparinization of the circuit via an immobilized heparinase I filter. This study tested a device based on Taylor-Couette flow and simultaneous separation/reaction for efficacy and safety of heparin removal in a sheep model. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. The device, referred to as a vortex flow plasmapheretic reactor, consisted of two concentric cylinders, a priming volume of 45 ml, a microporous membrane for plasma separation, and an outer compartment where the immobilized heparinase I was fluidized separately from the blood cells. Manual white cell and platelet counts, hematocrit, total protein, and fibrinogen assays were performed. Heparin levels were indirectly measured via whole-blood recalcification times (WBRTs). The vortex flow plasmapheretic reactor maintained significantly higher heparin levels in the extracorporeal circuit than in the sheep (device inlet WBRTs were 1.5 times the device outlet WBRTs) with no hemolysis. The reactor treatment did not effect any physiologically significant changes in complete blood cell counts, platelets, and protein levels for up to 2 hr of operation. Furthermore, gross necropsy and histopathology did not show any significant abnormalities in the kidney, liver, heart, brain, and spleen.
Resumo:
Wingtip vortices represent a hazard for the stability of the following airplane in airport highways. These flows have been usually modeled as swirling jets/wakes, which are known to be highly unstable and susceptible to breakdown at high Reynolds numbers for certain flow conditions, but different to the ones present in real flying airplanes. A very recent study based on Direct Numerical Simulations (DNS) shows that a large variety of helical responses can be excited and amplified when a harmonic inlet forcing is imposed. In this work, the optimal response of q-vortex (both axial vorticity and axial velocity can be modeled by a Gaussian profile) is studied by considering the time-harmonically forced problem with a certain frequency ω. We first reproduce Guo and Sun’s results for the Lamb-Oseen vortex (no axial flow) to validate our numerical code. In the axisymmetric case m = 0, the system response is the largest when the input frequency is null. The axial flow has a weak influence in the response for any axial velocity intensity. We also consider helical perturbations |m| = 1. These perturbations are excited through a resonance mechanism at moderate and large wavelengths as it is shown in Figure 1. In addition, Figure 2 shows that the frequency at which the optimal gain is obtained is not a continuous function of the axial wavenumber k. At smaller wavelengths, large response is excited by steady forcing. Regarding the axial flow, the unstable response is the largest when the axial velocity intensity, 1/q, is near to zero. For perturbations with higher azimuthal wavenumbers |m| > 1, the magnitudes of the response are smaller than those for helical modes. In order to establish an alternative validation, DNS has been carried out by using a pseudospectral Fourier formulation finding a very good agreement.
Resumo:
Nous proposons une nouvelle méthode pour quantifier la vorticité intracardiaque (vortographie Doppler), basée sur l’imagerie Doppler conventionnelle. Afin de caractériser les vortex, nous utilisons un indice dénommé « Blood Vortex Signature (BVS) » (Signature Tourbillonnaire Sanguine) obtenu par l’application d’un filtre par noyau basé sur la covariance. La validation de l’indice BVS mesuré par vortographie Doppler a été réalisée à partir de champs Doppler issus de simulations et d’expériences in vitro. Des résultats préliminaires obtenus chez des sujets sains et des patients atteints de complications cardiaques sont également présentés dans ce mémoire. Des corrélations significatives ont été observées entre la vorticité estimée par vortographie Doppler et la méthode de référence (in silico: r2 = 0.98, in vitro: r2 = 0.86). Nos résultats suggèrent que la vortographie Doppler est une technique d’échographie cardiaque prometteuse pour quantifier les vortex intracardiaques. Cet outil d’évaluation pourrait être aisément appliqué en routine clinique pour détecter la présence d’une insuffisance ventriculaire et évaluer la fonction diastolique par échocardiographie Doppler.
Resumo:
Size and surface dynamical effects are investigated in thin superconducting stripes with variable width. We perform numerical simulations of the vortex dynamics, with the inclusion of the surface confining potential and a random distribution of pinning centers. To fully characterize the vortex flow, we calculate the differential resistance, the transverse diffusion coefficient, the structure factor and the intensity of the Bragg peaks, as functions of the transport force. We found that surface effects induce a premature ordering of the flux line lattice, and the system displays plastic and smectic behavior only in a very narrow range of forces. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.
Resumo:
Using numerical simulations, we analyze the anisotropy effects in the critical currents and dynamical properties of vortices in a thin superconducting film submitted to hexagonal and Kagomé periodical pinning arrays. The calculations are performed at zero temperature, for transport currents parallel and perpendicular to the main axis of the lattice, and parallel to the diagonal axis of the rhombic unit cell. We show that the critical currents and dynamic properties are anisotropic for both pinning arrays and all directions of the transport current. The anisotropic effects are more significant just above the critical current and disappear with higher values of current and both pinning arrays. The dynamical phases for each case and a wide range of transport forces are analyzed. © 2012 Springer Science+Business Media, LLC.
Resumo:
By solving the time dependent Ginzburg-Landau equations, we investigated the influence of an internal triangular arrangement of point-like defects on the vortex configurations in a thin mesoscopic sample. The effect of the number of internal defects and their nature on the entrance position of the vortex is studied for a very thin circular sample. We found that the interplay between the vortex-vortex repulsion, the vortex-defect interaction and the interaction with the sample border leads to non-commensurate vortex configurations. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Using molecular dynamics simulations, we analyze the effects of artificial periodic arrays of pinning sites on the critical current of superconducting thin films as a function of vortex density. We analyze two types of periodic pinning array: hexagonal and Kagomé. For the Kagome pinning network we make calculations using two directions of transport current: along and perpendicular to the main axis of the lattice. Our results show that the hexagonal pinning array presents higher critical currents than the Kagomé and random pinning configuration for all vortex densities. In addition, the Kagomé networks show anisotropy in their transport properties. © 2012 Springer Science+Business Media, LLC.