958 resultados para Vortex configurations
Resumo:
The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry.
Resumo:
The study of superconducting samples in mesoscopic scale presented a remarkable improvement during the last years. Certainly, such interest is based on the fact that when the size of the samples is close to the order of the temperature dependent coherence length xi(T), and/or the size of the penetration depth lambda(T), there are some significant modifications on the physical properties of the superconducting state. This contribution tests the square cross-section size limit for the occurrence (or not) of vortices in mesoscopic samples of area L-2, where L varies discretely from 1 xi(0) to 8 xi(0).The time dependent Ginzburg-Landau (TDGL) equations approach is used upon taking the order parameter and the local magnetic field invariant along the z-direction. The vortex configurations at the equilibrium can be obtained from the TDGL equations for superconductivity as the system relaxes to the stationary state.The obtained results show that the limit of vortex penetration is for the square sample of size 3 xi(0) x 3 xi(0) in which only a single vortex are allowed into the sample. For smaller specimens, no vortex can be formed and the field entrance into the sample is continuous and the total flux penetration occurs at higher values of H/H-c2(0), where H-c2(T) is the upper critical field. Otherwise, for larger samples different vortices patterns can be observed depending on the sample size. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In general, the studies of finite size effects in mesoscopic superconductors have been carried out in such a way that the temperature parameter is constant in the entire system. However, we could have situations where a real sample is near a heater source, as an example. In such situations, gradients of temperature are present. On the other hand, mesoscopic superconductors are interesting systems due to the fact that they present confinement effects which influence all the vortex dynamics. Thus, in this work we studied the influence of thermal gradients on the vortex dynamics in mesoscopic superconductors. For this purposes, we used the time dependent Ginzburg-Landau equations. The thermal gradients produce an asymmetric distribution of the currents around the system which, in turn, yield interesting vortex configurations and difficult the formation of giant vortices.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We obtain the vortex configurations, the matching fields, and the magnetization of a superconducting film with a finite cross section. The applied magnetic field is normal to this cross section, and we use the London theory to calculate many of its properties, such as the local magnetic field, the free energy, and the induction for the mixed state. Thus previous similar theoretical works, done for an infinitely long superconducting film, are recovered here, in the special limit of a very long cross section. ©1999 The American Physical Society.
Resumo:
By solving the time dependent Ginzburg-Landau equations, we investigated the influence of an internal triangular arrangement of point-like defects on the vortex configurations in a thin mesoscopic sample. The effect of the number of internal defects and their nature on the entrance position of the vortex is studied for a very thin circular sample. We found that the interplay between the vortex-vortex repulsion, the vortex-defect interaction and the interaction with the sample border leads to non-commensurate vortex configurations. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.
Resumo:
In this computational study we investigate the role of turbulence in ideal axisymmetric vortex breakdown. A pipe geometry with a slight constriction near the inlet is used to stabilise the location of the breakdown within the computed domain. Eddy-viscosity and differential Reynolds stress models are used to model the turbulence. Changes in upstream turbulence levels, flow Reynolds and Swirl numbers are considered. The different computed solutions are monitored for indications of different breakdown flow configurations. Trends in vortex breakdown due to turbulent flow conditions are identified and discussed.
Resumo:
When the in-plane bias magnetic field acting on a flat circular magnetic dot is smaller than the saturation field, there are two stable competing magnetization configurations of the dot: the vortex and the quasi-uniform (C-state). We measured microwave absorption properties in an array of non-interacting permalloy dots in the frequency range 1-8 GHz when the in-plane bias magnetic field was varied in the region of the dot magnetization state bi-stability. We found that the microwave absorption properties in the vortex and quasi-uniform stable states are substantially different, so that switching between these states in a fixed bias field can be used for the development of reconfigurable microwave magnetic materials.
Resumo:
Vortex breaking has traditionally been studied for non-uniform critical current densities, although it may also appear due to non-uniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density J for any arbitrary orientation of the transport current and the magnetic field. If J is above a certain critical value, J(c), the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2Cu3O7-delta (YBCO) low-angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension is an element of(l) and compared it to existing predictions based on the vortex structure.
Resumo:
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing eccentricity of the trapping potential. By breaking the rotational symmetry, the vortex system undergoes a rich variety of structural changes, including the formation of zigzag and linear configurations. These spatial rearrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the eccentricity parameter. This behavior allows to actively control the distribution of vorticity in many-body systems and opens the possibility of studying interactions between quantum vortices over a large range of parameters.
Resumo:
This paper describes an investigation of various shroud bleed slot configurations of a centrifugal compressor using CFD with a manual multi-block structured grid generation method. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400hp. The baseline numerical model has been developed and validated against experimental performance measurements. The influence of the bleed slot flow field on a range of operating conditions between surge and choke has been analysed in detail. The impact of the returning bleed flow on the incidence at the impeller blade leading edge due to its mixing with the main through-flow has also been studied. From the baseline geometry, a number of modifications to the bleed slot width have been proposed, and a detailed comparison of the flow characteristics performed. The impact of slot variations on the inlet incidence angle has been investigated, highlighting the improvement in surge and choked flow capability. Along with this, the influence of the bleed slot on stabilizing the blade passage flow by the suction of the tip and over-tip vortex flow by the slot has been considered near surge.