904 resultados para Vortex Pattern
Resumo:
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing eccentricity of the trapping potential. By breaking the rotational symmetry, the vortex system undergoes a rich variety of structural changes, including the formation of zigzag and linear configurations. These spatial rearrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the eccentricity parameter. This behavior allows to actively control the distribution of vorticity in many-body systems and opens the possibility of studying interactions between quantum vortices over a large range of parameters.
Resumo:
A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.
Resumo:
Different methods to reduce the high suction caused by conical vortices have been reported in the literature: vertical parapets, either solid or porous, placed at the roof edges being the most analysed configuration. Another method for alleviating the high suction peaks due to conical vortices is the use of some non-standard parapet configuration like cantilever parapets. In this paper the influence of roof curvature on the conical vortex pattern appearing on a curved roof (Fig. 1) when subject to oblique winds is experimentally analysed by testing the mean pressure distribution on the curved roofs of low-rise building models in a wind tunnel. Also, the efficiency of cantilever parapets to reduce mean suction loads on curved roofs is experimentally checked. Very high suction loads have been measured on curved roofs, the magnitude of these high suction loads being significantly decreased when cantilever parapets are used. Thus, the suitability of these parapets to reduce wind pressure loads on curved roofs is demonstrated.
Resumo:
The present work describes steady and unsteady computation of reacting flow in a Trapped Vortex Combustor. The primary motivation of this study is to develop this concept into a working combustor in modern gas turbines. The present work is an effort towards development of an experimental model test rig for further understanding dynamics of a single cavity trapped vortex combustor. The steady computations with and without combustion have been done for L/D of 0.8, 1 and 1.2; also unsteady non-reacting flow simulation has been done for L/D of 1. Fuel used for the present study is methane and Eddy-Dissipation model has been used for combustion-turbulence interactions. For L/D of 0.8, combustion efficiency is maximum and pattern factor is minimum. Also, primary vortex in the cavity is more stable and symmetric for L/D of 0.8. From unsteady non-reacting flow simulations, it is found that there is no vortex shedding from the cavity but there are oscillations in the span-wise direction of the combustor.
Resumo:
Previous studies on a single-cavity, compact trapped vortex combustor concept showed good flame stability for a wide range of flow conditions. However, achieving good mixing between cavity products and mainstream flow was still a major challenge. In the present study, a passive mixing enhancement strategy of using inclined struts along with a flow guide vane is presented and experimentally tested at atmospheric pressure conditions. Results show excellent mixing and consequently low values of the combustor exit pattern factor in the range of 0.1 and small flame lengths (57 times the main-duct depth). The pressure drop is small in the range of 0.35%, and NOx levels of the order of 12ppm are achieved. The flame stability is excellent, and combustion efficiency is reasonable in the range of 96%. The effectiveness of the proposed strategy is explained on the basis of in-situ OH chemiluminescence images and prior numerical simulations of the resulting complex flow field. The flow guide vane is observed to lead to a counterclockwise cavity vortex, which is conducive to the rise of cavity combustion products along the inclined struts and subsequent mixing with the mainstream flow.
Resumo:
In this paper control of oblique vortex shedding in the wake behind a straight circular cylinder is explored experimentally and computationally. Towards this, steady rotation of the cylinder about its axis is used as a control device. Some limited studies are also performed with a stepped circular cylinder, where at the step the flow is inevitably three-dimensional irrespective of the rotation rate. When there is no rotation, the vortex shedding pattern is three dimensional as described in many previous studies. With a non-zero rotation rate, it is demonstrated experimentally as well as numerically that the shedding pattern becomes more and more two-dimensional. At sufficiently high rotation rates, the vortex shedding is completely suppressed.
Resumo:
This paper reports first observations of transition in recirculation pattern from an open-bubble type axisymmetric vortex breakdown to partially open bubble mode through an intermediate, critical regime of conical sheet formation in an unconfined, co-axial isothermal swirling flow. This time-mean transition is studied for two distinct flow modes which are characterized based on the modified Rossby number (Ro(m)), i.e., Ro(m) <= 1 and Ro(m) > 1. Flow modes with Ro(m) <= 1 are observed to first undergo cone-type breakdown and then to partially open bubble state as the geometric swirl number (S-G) is increased by similar to 20% and similar to 40%, respectively, from the baseline open-bubble state. However, the flow modes with Ro(m) > 1 fail to undergo such sequential transition. This distinct behavior is explained based on the physical significance associated with Ro(m) and the swirl momentum factor (xi). In essence, xi represents the ratio of angular momentum distributed across the flow structure to that distributed from central axis to the edge of the vortex core. It is observed that xi increases by similar to 100% in the critical swirl number band where conical breakdown occurs as compared to its magnitude in the S-G regime where open bubble state is seen. This results from the fact that flow modes with Ro(m) <= 1 are dominated by radial pressure gradient due to swirl/rotational effect when compared to radial pressure deficit arising from entrainment (due to the presence of co-stream). Consequently, the imparted swirl tends to penetrate easily towards the central axis causing it to spread laterally and finally undergo conical sheet breakdown. However, the flow modes with Ro(m) > 1 are dominated by pressure deficit due to entrainment effect. This blocks the radial inward penetration of imparted angular momentum thus preventing the lateral spread of these flow modes. As such these structures fail to undergo cone mode of vortex breakdown which is substantiated by a mere 30%-40% rise in xi in the critical swirl number range. (C) 2014 AIP Publishing LLC.
Resumo:
This paper proposes criteria for predicting the tendency of looping in tropical cyclone tracks using the approach of vortex dynamics. We model the asymmetric structure of a cyclone by a system of vortex patches. The evolution of such system of vortices is simulated by the method of contour dynamics. A new set of exact analytic formulas for contour dynamics calculations is derived, which is shown to be more computationally effective. Based on point-vortex models, we derive analytic formulas for the criteria of looping in a cyclone track. From numerical experiments, the simulated trajectories obtained from the point-vortex system and vortex patch system agree quite well. Hence, the looping criteria obtained from the point-vortex system can be applied by forecasters to stay alert for tendency of looping in a cyclone track. To demonstrate the applicability of the proposed criteria, the trajectory of Typhoon Yancy (9012), whose field data are available from ''TCM-90'', is simulated. The case study shows that the asymmetric structure similar to the pattern of a beta gyre is responsible for its recurvature when Yancy landed Fujian Province, China on 20 August 1990.
Resumo:
Experiments have been performed in a blowdown supersonic wind tunnel to investigate the effect of arrays of sub-boundary layer vortex generators placed upstream of a normal shock/ boundary layer interaction. The investigation makes use of a recovery shock wave and the naturally grown turbulent boundary layer on the wind tunnel floor. Experiments were performed at Mach numbers of 1.5 and 1.3 and a freestream Reynolds number of 28 × 106. Two types of vortex generators were investigated - wedge-shaped and arrays of counter-rotating vanes. It was found that at Mach 1.5 the vane-type VGs eliminated and the wedge-type VGs greatly reduced the separation bubble under the shock. When placed in the supersonic part of the flow both VGs caused a wave pattern consisting of a shock, re-expansion and shock. The re-expansion and double shocks are undesirable features since they equate to increased total pressure losses and hence increased -wave drag. Furthermore there are indications that the vortex intensity is reduced by the normal shock/ boundary layer interaction. When the shock was located directly over the VGs there was no re-expansion present, but the 'damping' effect of the shock on the vortex persisted. It appears that the vortices produced by the wedge-shaped VGs lift off the surface more rapidly. Similar results were observed at Mach 1.3, where the flow was unseparated.
Resumo:
A strong link exists between stratospheric variability and anomalous weather patterns at the earth’s surface. Specifically, during extreme variability of the Arctic polar vortex termed a “weak vortex event,” anomalies can descend from the upper stratosphere to the surface on time scales of weeks. Subsequently the outbreak of cold-air events have been noted in high northern latitudes, as well as a quadrupole pattern in surface temperature over the Atlantic and western European sectors, but it is currently not understood why certain events descend to the surface while others do not. This study compares a new classification technique of weak vortex events, based on the distribution of potential vorticity, with that of an existing technique and demonstrates that the subdivision of such events into vortex displacements and vortex splits has important implications for tropospheric weather patterns on weekly to monthly time scales. Using reanalysis data it is found that vortex splitting events are correlated with surface weather and lead to positive temperature anomalies over eastern North America of more than 1.5 K, and negative anomalies over Eurasia of up to −3 K. Associated with this is an increase in high-latitude blocking in both the Atlantic and Pacific sectors and a decrease in European blocking. The corresponding signals are weaker during displacement events, although ultimately they are shown to be related to cold-air outbreaks over North America. Because of the importance of stratosphere–troposphere coupling for seasonal climate predictability, identifying the type of stratospheric variability in order to capture the correct surface response will be necessary.
Resumo:
Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.