977 resultados para Volume median diameter (VMD)
Resumo:
El conocimiento de las características de las diferentes boquillas de pulverización tiene una importancia imprescindible para la adecuada y correcta recomendación de su uso. El objetivo de este trabajo fue determinar el espaciamiento máximo en la barra horizontal de pulverización, la simetría del chorro y el diámetro de gotas en boquillas de pulverización TF-VS2. El trabajo fue realizado en mesa de deposición, en donde fueron utilizadas las presiones de 100, 200 y 300 kPa en las alturas de trabajo de 40 y 50 cm. La simetría del chorro fue determinada en función de dos metodologías (empírica y trigonométrica). También se determinó el tamaño de las gotas, utilizando el método de difracción de rayos laser, en función de dos caldos de pulverización constituidos por agua y por agua con adyuvante en las tres presiones de trabajo ya descritas. Los espaciamientos máximos entre las boquillas en la barra de pulverización no pueden rebasar los 70 y 82 cm, admitiéndose el CV de un 10% para las alturas de 40 y de 50 cm respectivamente. La mayor presión proporcionó el menor diámetro mediano volumétrico (DMV) y la peor uniformidad de gotas, además del mayor porcentaje de gotas susceptibles a deriva, así como también aumentó la simetría entre los chorros.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This study aimed to verify the influence of adjuvants on the droplet spectrum of an air induction nozzle. The experiment used nine spray solutions, one including only water and eight containing adjuvants: Nimbus® (mineral oil), Óleo vegetal Nortox (vegetal oil), Li-700® (a mixture of lecithin and propionic acid), Agral® (nonyl phenoxy poly ethanol), In-Tec® (nonyl phenol ethoxylate), Antideriva (nonyl phenol ethoxylate), Silwet® L-77 Ag (copolymer polyester and silicon) and TA 35 (sodium lauryl ether sulfate). A flat fan air induction nozzle Hypro® Guardian Air 110 03 was used for the droplet spectrum evaluation. The study was conducted at the Laboratory for Particle Size Analysis (Lapar), at FCAV/UNESP, Jaboticabal/SP - Brazil. The determination of the droplet spectrum characteristics (Volume Median Diameter/VMD, percentage of droplets smaller than 100 micrometers and span) was carried out by a particle size analyzer by laser diffraction Mastersizer S (Malvern Instruments). For statistical analysis the mean values were compared using Confidence Interval at 95% (CI 95%). The results showed that for the Hypro® GA air induction nozzle the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) increased the VMD. The percentage of droplets smaller than 100 micrometers was lower for the Agral®, Antideriva, In-Tec® e TA 35, in comparison with the Óleo Vegetal Nortox and Li-700®. The span was higher for the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) and lower for the TA 35 (sodium lauryl ether sulfate), showing that the TA 35 adjuvant has a potential to improve the quality of the droplet spectrum of the Hypro® GA 11003 nozzle.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pesticides applications have been described by many researches as a very inefficient process. In some cases, there are reports that only 0.02% of the applied products are used for the effective control of the problem. The main factor that influences pesticides applications is the droplet size formed on spraying nozzles. Many parameters affects the dynamic of the droplets, like wind, temperature, relative humidity, and others. Small droplets are biologically more active, but they are affected by evaporation and drift. On the other hand, the great droplets do not promote a good distribution of the product on the target. In this sense, associated with the risk of non target areas contamination and with the high costs involved in applications, the knowledge of the droplet size is of fundamental importance in the application technology. When sophisticated technology for droplets analysis is unavailable, is common the use of artificial targets like water-sensitive paper to sample droplets. On field sampling, water-sensitive papers are placed on the trials where product will be applied. When droplets impinging on it, the yellow surface of this paper will be stained dark blue, making easy their recognition. Collected droplets on this papers have different kinds of sizes. In this sense, the determination of the droplet size distribution gives a mass distribution of the material and so, the efficience of the application of the product. The stains produced by droplets shows a spread factor proportional to their respectives initial sizes. One of methodologies to analyse the droplets is a counting and measure of the droplets made in microscope. The Porton N-G12 graticule, that shows equaly spaces class intervals on geometric progression of square 2, are coulpled to the lens of the microscope. The droplet size parameters frequently used are the Volumetric Median Diameter (VMD) and the Numeric Median Diameter. On VMD value, a representative droplets sample is divided in two equal parts of volume, in such away one part contains droplets of sizes smaller than VMD and the other part contains droplets of sizes greater that VMD. The same process is done to obtaining the NMD, which divide the sample in two equal parts in relation to the droplets size. The ratio between VMD and NMD allows the droplets uniformity evaluation. After that, the graphics of accumulated probability of the volume and size droplets are plotted on log scale paper (accumulated probability versus median diameter of each size class). The graphics provides the NMD on the x-axes point corresponding to the value of 50% founded on the y-axes. All this process is very slow and subjected to operator error. So, in order to decrease the difficulty envolved with droplets measuring it was developed a numeric model, implemented on easy and accessfull computational language, which allows approximate VMD and NMD values, with good precision. The inputs to this model are the frequences of the droplets sizes colected on the water-sensitive paper, observed on the Porton N-G12 graticule fitted on microscope. With these data, the accumulated distribution of the droplet medium volumes and sizes are evaluated. The graphics obtained by plotting this distributions allow to obtain the VMD and NMD using linear interpolation, seen that on the middle of the distributions the shape of the curves are linear. These values are essential to evaluate the uniformity of droplets and to estimate the volume deposited on the observed paper by the density (droplets/cm2). This methodology to estimate the droplets volume was developed by 11.0.94.224 Project of the CNPMA/EMBRAPA. Observed data of herbicides aerial spraying samples, realized by Project on Pelotas/RS county, were used to compare values obtained manual graphic method and with those obtained by model has shown, with great precision, the values of VMD and NMD on each sampled collector, allowing to estimate a quantities of deposited product and, by consequence, the quantities losses by drifty. The graphics of variability of VMD and NMD showed that the quantity of droplets that reachs the collectors had a short dispersion, while the deposited volume shows a great interval of variation, probably because the strong action of air turbulence on the droplets distribution, enfasizing the necessity of a deeper study to verify this influences on drift.
Resumo:
The variability of input parameters is the most important source of overall model uncertainty. Therefore, an in-depth understanding of the variability is essential for uncertainty analysis of stormwater quality model outputs. This paper presents the outcomes of a research study which investigated the variability of pollutants build-up characteristics on road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary highly even within the same land use. Additionally, industrial land use showed relatively higher variability of maximum build-up, build-up rate and particle size distribution, whilst the commercial land use displayed a relatively higher variability of pollutant-solid ratio. Among the various build-up parameters analysed, D50 (volume-median-diameter) displayed the relatively highest variability for all three land uses.
Resumo:
Purpose: To study the effect of the size of the surface-coated polycaprolactone (PCL) microparticle carriers on the aerosolization and dispersion of Salbutamol Sulfate (SS) from Dry Powder Inhaler (DPI) formulations. Methods: The microparticles were fabricated using an emulsion technique in four different sizes (25, 48, 104 and 150 μm) and later coated with Magnesium stearate (MgSt) and leucine. They were characterized by laser diffraction and SEM. The Fine Particle Fraction (FPF) of SS from powder mixtures was determined by a Twin Stage Impinger (TSI). Results: As the carrier size increased from 25 μm to 150 μm, the FPF of the SS delivered by the coated PCL particles increased approximately four fold. A linear relationship was found between the FPF and Volume mean Diameter (VMD) of the particles over this range. Conclusions: The dispersion behaviour of SS from PCL carriers was dependent on the inherent size of the carriers and the increased FPF of SS with increased carrier size probably reflects the higher mechanical forces produced due to the carrier-carrier collisions or collisions between the carrier particles and the internal walls of the inhaler during aerosolization.
Resumo:
New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.
Resumo:
As pontas de pulverização são responsáveis pela formação das gotas, e cada ponta apresenta características próprias relacionadas ao espectro de gotas e perfil de deposição, específicas para determinados alvos. Este trabalho teve o objetivo de caracterizar o diâmetro e a uniformidade das gotas e o perfil de distribuição volumétrica das pontas de pulverização AI 110015 e TTI 110015, bem como seu efeito sobre a mortalidade de corda-de-viola, com herbicida pré-emergente, associado ou não a adjuvantes. Avaliou-se o número de plantas emergidas e os pesos secos da parte aérea e radicular das plantas. Os perfis de distribuição volumétrica para a altura de 40 cm foram avaliados em mesa de deposição. A partir dos perfis de distribuição, simulou-se o padrão de deposição ao longo da barra de pulverização. O espectro do diâmetro de gotas foi determinado em analisador de tamanho de partículas por difração de luz laser . O herbicida diuron + hexazinona foi eficiente no controle em préemergência de corda-de-viola, podendo ser utilizado polimetil siloxano organomodificado ou óleo mineral como adjuvantes, associados às pontas de pulverização AI 110015 ou TTI 110015. O uso de adjuvantes proporcionou aumento no diâmetro mediano volumétrico e redução na porcentagem de gotas com diâmetro inferior a 100 µm. O espaçamento sugerido entre os bicos na barra de pulverização foi de 70 cm para o modelo AI 110015 e 80 cm para o modelo TTI 110015.