884 resultados para Volume Fraction
Resumo:
Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.
Resumo:
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R2=99.9% and R2=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Resumo:
The problem of spurious increase in volume fraction of second-phase particles during computer simulations of coarsening is examined. The origin of this problem is traced to the use of too long a time step (used for numerical integration of growth rates with respect to time) which leads to small particles with large negative growth rates shrinking to negative radii at the end of the time step. Such a shrinkage to negative sizes has the effect of pumping solute into the system. It is therefore suggested that the length of the time step be chosen in accordance with the size of the smallest particle present in the system. It is shown that spurious increase in particle Volume has a significant effect on the particle size distributions in the scaling regime (making them broader and more skewed in the Lifshitz-Slyozov-Wagner model). Its effect on coarsening kinetics, however, is found to be small.
Resumo:
The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.
Resumo:
Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.
Resumo:
A methodology for measurement of planar liquid volume fraction in dense sprays using a combination of Planar Laser-Induced Fluorescence (PLIF) and Particle/Droplet Imaging Analysis (PDIA) is presented in this work. The PLIF images are corrected for loss of signal intensity due to laser sheet scattering, absorption and auto-absorption. The key aspect of this work pertains to simultaneously solving the equations involving the corrected PLIF signal and liquid volume fraction. From this, a quantitative estimate of the planar liquid volume fraction is obtained. The corrected PLIF signal and the corrected planar Mie scattering can be also used together to obtain the Sauter Mean Diameter (SMD) distribution by using data from the PDIA technique at a particular location for calibration. This methodology is applied to non-evaporating sprays of diesel and a more viscous pure plant oil at an injection pressure of 1000 bar and a gas pressure of 30 bar in a high pressure chamber. These two fuels are selected since their viscosity values are very different with a consequently very different spray structure. The spatial distribution of liquid volume fraction and SMD is obtained for two fuels. The proposed method is validated by comparing liquid volume fraction obtained by the current method with data from PDIA technique. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers < 10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction similar to 13% and metal layer thickness similar to 30 nm, which give maximum crack resistance.
Resumo:
Peron, N., Cox, S.J., Hutzler, S. and Weaire, D. (2007) Steady drainage in emulsions: corrections for surface Plateau borders and a model for high aqueous volume fraction. The European Physical Journal E - Soft Matter. 22: 341-351. Sponsorship: This research was supported by the European Space Agency (14914/02/NL/SH, 14308/00/NL/SG) (AO-99-031) CCN 002 MAP Project AO-99-075) and Science Foundation Ireland (RFP 05/RFP/PHY0016). SJC acknowledges support from EPSRC (EP/D071127/1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.
Determination of the volume fraction of retained austenite in a 300m steel by heat tinting technique
Resumo:
Applying the Heat Tinting Technique the microestrutural characterization of a 300M steel (medium carbon steel) was accomplished. The steel was austenitized for 20 min to 900°C, followed by holding at 400°C (in the bainitic temperature), with maintenance time of the material in the temperature of 1min, 5min and 30min, aiming at the formation of a multiphase structure. Through the metallographic analysis it is verified that, with the use of this technique, it is possible the determination of the volume fraction of the present phases in the 300M steel, especially in the identification and quantification of the retained austenite. Copyright © 2007 SAE International.
Resumo:
In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices (< > and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), −0.28 to −0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (<α>), 0.07 to 0.11 (<αz>), −0.44 to −0.30 (σ(α)), and −0.39 to −0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60–69, 70–79, and >79years. In conclusion, the bone volume fraction–microstructure scaling relations showed a rather universal character.
Resumo:
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphologyelasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae and iliac crest were analysed. Their morphology was assessed via 25 variables and their stiffness tensor (inline image) was computed from six independent load cases using micro finite element analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multi-linear regression modelling the dependent variable inline image. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of inline image (inline image=0.889), especially in combination with fabric (inline image=0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (inline image=0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and post-elastic properties.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.