998 resultados para Voltammetric sensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pH-sensitive property of the single-wall carbon nanotube modified electrode based oil the electroactive group on the single-wall carbon nanotube was explored by differential pulse voltammetry technique. In pH range 1-13 investigated in Britton-Robinson (B-R) buffer, the anodic peak shifted negatively along with the increase of pH exhibiting a reversible Nernstian response. Experiments were carried out to investigate the response of the single-wall carbon nanotube (SWNT) modified electrode to analytes associated with pH change. The response behavior of the modified electrode to ammonia was studied as an example. The potential response could reach equilibrium within 5 min. The modified electrode had good operational stability. Voltammetric urease and acetylcholinesterase biosensors were constructed by immobilizing the enzymes with sol-get hybrid material. The maximum potential shift could reach 0.130 and 0.220V for urea and acetylthiocholine, respectively. The methods for preparing sensor and biosensor were simple and reproducible and the range of analytes could be extended to substrates of other hydrolyases and esterases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screen-printed carbon electrode (SPCE) modified with poly-L-histidine film can be successfully applied for chromium(VI) determination based on its pre-concentration. Optimum adherence and stability of the POIY-L-histidine film was obtained by direct addition of PH solution 1% (w/v) on the electrode surface, followed by heating at 80 degrees C during 5 min. Linear response range, sensitivity and limit of detection were 0. 1-150 [mu mol L-1, 4. 13 LA mu mol L` and 0.046 mu mol L-1. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was measured as 3.2% for 10 experiments in 40 mu mol L-1 using the same electrode and 4.0% using screen-printed electrode as disposable sensor, respectively. The voltammetric sensor was applied to determination of Cr(VI) and indirect determination of Cr(III) in wastewater samples previously treated by a leather dyeing industry and the average recovery for these samples was around 97%. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p-Phenylenediamine (PPD) and resorcinol (RSN) are hair dye precursors of permanent dyeing more used worldwide. The present work describes a simple and economic voltammetric sensor for simultaneous determination of both components in commercial hair dyeing and tap water at low concentrations. PPD and RSN are oxidized at + 0.17 and + 0.61 V vs. Ag/AgCl at glassy carbon electrode coated by composites of multiwall carbon nanotubes with chitosan (MWNTs-CHT/GCE), which anodic currents density normalized are 10% and 70% higher in relation to the unmodified electrode, respectively. The calibration curve for simultaneous determination of PPD and RSN showed linearity between 0.55 and 21.2 mg L-1 with detection limits of 0.79 and 0.58 mg L-1 to PPD and RSN, respectively. The relative standard deviations found for ten determinations were of 0.73 and 2.35% to 2.70 mg L-1, and 0.87 and 1.08% to 15.96 mg L-1 to PPD and RSN, respectively. The voltammetric sensor was applied to determination of PPD and RSN in tap water and commercial hair dyeing samples and the average recovery for these samples was around 97%. The products generated from PPD and RSN reaction such as was p-quinonediimine and bandrowski base were detected by LC-MS/MS and UV-vis spectrophotometry. (C) 2014 Published by Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O Cancro da mama é uma doença cuja incidência tem vindo a aumentar de ano para ano e além disso é responsável por um grande número de mortes em todo mundo. De modo a combater esta doença têm sido propostos e utilizados biomarcadores tumorais que permitem o diagnóstico precoce, o acompanhamento do tratamento e/ou a orientação do tipo tratamento a adotar. Atualmente, os biomarcadores circulantes no sangue periférico recomendados pela Associação Americana de Oncologia Clinica (ASCO) para monitorizar os pacientes durante o tratamento são o cancer antigen 15-3 (CA 15-3), o cancer antigen 27.29 (CA 27.29) e o cancer embryobic antigen (CEA). Neste trabalho foi desenvolvido um sensor eletroquímico (voltamétrico) para monitorizar o cancro da mama através da análise do biomarcador CA 15-3. Inicialmente realizou-se o estudo da adsorção da proteína na superfície do elétrodo para compreender o comportamento do sensor para diferentes concentrações. De seguida, estudaram-se três polímeros (poliaminofenol, polifenol e polifenilenodiamina) e selecionou-se o poliaminofenol como o polímero a utilizar, pois possuía a melhor percentagem de alteração de sinal. Após a seleção do polímero, este foi depositado na superfície do elétrodo por eletropolimerização, formando um filme polimérico molecularmente impresso (MIP) à volta da proteína (molde). Posteriormente, foram analisados cinco solventes (água, mistura de dodecil sulfato de sódio e ácido acético, ácido oxálico, guanidina e proteinase K) e o ácido oxálico revelou ser mais eficaz na extração da proteína. Por último, procedeu-se à caraterização do sensor e analisou-se a resposta analítica para diferentes concentrações de CA 15-3 revelando diferenças claras entre o NIP (polímero não impresso) e o MIP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dipyrromethene-Cu(II) derivatives possessing two dodecane alkyl chains have been used for the modification of gold electrodes. Electroactive host molecules have been incorporated into a lipophilic dodecanethiol SAM deposited onto gold electrodes through hydrophobic and van der Waals interactions (embedment technique). The presence of dipyrromethene-Cu(II) redox centers on the electrode surface was proved by cyclic voltammetry and Osteryoung square-wave voltammetry. The Au electrodes incorporating redox active Cu(II)-dipyrromethene SAMs were used for the direct voltammetric determination of paracetamol in human plasma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A differential pulse voltammetric sensor for the determination of tamsulosin hydrochloride (TAM) using multiwalled carbon nanotubes (MWNTs)–Nafion-modified glassy carbon electrode (GCE) has been developed. MWNTs were dispersed in water with the help of Nafion and were used to modify the surface of GCE via solvent evaporation. At MWNT-modified electrode, TAM gave a well-defined oxidation peak at a potential of 1084 mV in 0.1 M acetate buffer solution of pH 5. Compared to the bare electrode, the peak current of TAM showed a marked increase and the peak potential showed a negative deviation. The determination conditions, such as the amount of MWNT–Nafion suspension, pH of the supporting electrolyte and scan rate, were optimised. Under optimum conditions, the oxidation peak current was proportional to the concentration of TAM in the range 1 × 1023 M–3 × 1027 M with a detection limit of 9.8 × 1028 M. The developed sensor showed good stability, selectivity and was successfully used for the determination of TAM in pharmaceutical formulations and urine samples

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cochin University of Science & Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A biomimetic sensor is proposed as a promising new analytical method for determination of captopril in different classes of samples. The sensor was prepared by modifying a carbon paste electrode with iron (II) phthalocyanine bis(pyridine) [FePe(dipy)] complex. Amperometric measurements in a batch analytical mode were first carried out in order to optimize the sensor response. An applied potential lower than 0.2 V vs Ag vertical bar AgCl in 0.1 mol L(-1) of TRIS buffer at pH 8.0 provided the best response, with a linear range of 2.5 x 10(-5) to 1.7 x 10(-4) mol L(-1). A detailed investigation of the selectivity of the sensor, employing seventeen other drugs, was also performed. Recovery studies were carried out using biological and environment samples in order to evaluate the sensor`s potential for use with these sample classes. Finally, the performance of the biomimetic sensor was optimized in a flow injection (FIA) system using a wall jet electrochemical cell. Under optimized flow conditions, a broad linear response range, from 5.0 x 10(-4) to 2.5 x 10(-2) mol L(-1), was obtained for captopril, with a sensitivity of 210 +/- 1 mu A L mol(-1).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The [(Mn4O5)-O-IV(terpy)(4)(H2O)(2)](6+) complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in glass electrode for better characterization of polymer was also performed. Electrocatalytic process by metal centers of the conducting polymer in H2O2 presence with an increase of anodic current at 0.85 V vs. SCE can be observed. The sensor showed great response from 9.9 x 10(-5) to 6.4 x 10(-4) mol L-1 concentration range with a detection limit of 8.8 x 10(-5) mol L-1, where the electrocatalytic mechanism was based on oxidation of H2O2 to H2O with consequently reduction of Mn-IV to Mn-III. After, the Mn-III ions are oxidized electrochemically to Mn-IV ions. (C) 2012 Elsevier Ltd .... Selection and/or peer-review under responsibility of the Symposium Cracoviense Sp. z.o.o.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The preparation and electrochemical characterization of hausmannite-type manganese oxide to use as a sensing material for sodium ion is described. This paper reports a new via synthetic to obtain of the hausmannite-type manganese oxide and its application in the construction of modified electrode as a voltammetric sensor. The electrochemical activity of hausmannite-type manganese oxide is controlled by intercalation/deintercalation of the sodium ions within the oxide lattice. The detection is based on the measurement of anodic current generated by oxidation of MnIII-MnIV at electrode surface. The best electrochemical response was obtained for a sensor composition of 20% (w/w) hausmannite oxide in the paste, a TRIS buffer solution of pH 6.0-7.0 and a scan rate of 50 mV s-1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 2.01 × 10 -5-2.09 × 10-4 mol L-1 with a slope of 355 μA L mmol-1 and a detection limit of 7.50 × 10 -6 mol L-1 using cyclic voltammetry. The use of hausmannite has significantly improved the selectivity of the sensor compared to the birnessite-type manganese oxide modified electrode. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estuarine systems play an important role in the retention of toxic trace elements owing to the affinity of these elements with particles dissolved in water. This work presents the use of a voltammetric sensor to monitor heavy metal (Zn (II), Cd(II) and Pb (II)) concentrations in the Cananeia-Iguape Estuarine-Lagoon region (Sao Paulo State, Brazil). Lower concentrations were found in the Southern estuarine system (Cananeia City) and increased concentrations observed in the Northern sector (Iguape City) were promoted by anthropogenic activities, with particular influence from the historical introduction of mining wastes and inputs from agricultural, industrial and domestic effluents. The proposed method is reliable, inexpensive and fast, can simultaneously provide information on the concentration of these metallic ions and can be easily used for field measurements aboard oceanographic ships.