989 resultados para Voltage and current waveforms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two different high bandwidth converter control strategies are discussed. One of the strategies is for voltage control and the other is for current control. The converter, in each of the cases, is equipped with an output passive filter. For the voltage controller, the converter is equipped with an LC filter, while an output has an LCL filter for current controller. The important aspect that has been discussed the paper is to avoid computation of unnecessary references using high-pass filters in the feedback loop. The stability of the overall system, including the high-pass filters, has been analyzed. The choice of filter parameters is crucial for achieving desirable system performance. In this paper, the bandwidth of achievable performance is presented through frequency (Bode) plot of the system gains. It has been illustrated that the proposed controllers are capable of tracking fundamental frequency components along with low-order harmonic components. Extensive simulation results are presented to validate the control concepts presented in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix power converters are used for transforming one alternating-current power supply to another, with different peak voltage and frequency. There are three input lines, with sinusoidally varying voltages which are 120◦ out of phase one from another, and the output is to be delivered as a similar three-phase supply. The matrix converter switches rapidly, to connect each output line in sequence to each of the input lines in an attempt to synthesize the prescribed output voltages. The switching is carried out at high frequency and it is of practical importance to know the frequency spectra of the output voltages and of the input and output currents. We determine in this paper these spectra using a new method, which has significant advantages over the prior default method (a multiple Fourier series technique), leading to a considerably more direct calculation. In particular, the determination of the input current spectrum is feasible here, whereas it would be a significantly more daunting procedure using the prior method instead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-voltage circuit breakers are among the most important equipments for ensuring the efficient and safe operation of an electric power system. On occasion, circuit breaker operators may wish to check whether equipment is performing satisfactorily and whether controlled switching systems are producing reliable and repeatable stress control. Monitoring of voltage and current waveforms during switching using established methods will provide information about the magnitude and frequency of voltage transients as a result of re-ignitions and restrikes. However, high frequency waveform measurement requires shutdown of circuit breaker and use of specialized equipment. Two utilities, Hydro-Québec in Canada and Powerlink Queensland in Australia, have been working on the development and application of a non-intrusive, cost-effective and flexible diagnostic system for monitoring high-voltage circuit breakers for reactive switching. The proposed diagnostic approach relies on the non-intrusive assessment of key parameters such as operating times, prestrike characteristics, re-ignition and restrike detection. Transient electromagnetic emissions have been identified as a promising means to evaluate the abovementioned parameters non-intrusively. This paper describes two complimentary methods developed concurrently by Powerlink and Hydro-Québec. Also, return of experiences on the application to capacitor bank and shunt reactor switching is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifiers can replace a conventional six pulse three-phase rectifier (diode bridge) providing a DC voltage with low ripple, low Total Harmonic Distortion of current (THDi) and a high Power Factor (PF). In this context is presented a multipulse rectifier with generalized Delta-differential autotransformer topology, which can provide any level of DC output voltage for any level of three-phase AC input voltage. This paper presents all the possible configurations for Delta topology in order to choose, through graphics, one configuration that presents reduced weight and volume. The average voltage on the DC bus must be compatible with the DC voltage in the six pulse rectifier used in commercial ASDs. Therefore, it is possible to apply the retrofit technique to replace the conventional bridge rectifier by the proposed multipulse rectifier. Based on mathematic models and simulation results, an 18-pulse rectifier with Delta topology, 220 V of line voltage, 315 V of DC output, and rating 2.5 kW of power was designed, implemented and applied for three different commercial ASDs. Experimental results as voltage and current waveforms and results about PF and THDi will be presented. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)