876 resultados para Vitamin D receptor (VDR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic factors influence whole blood lead (Pb-B) concentrations in lead exposed subjects. This study aimed at examining the combined effects (haplotype analysis) of three polymorphisms (BsmI, ApaI and FokI) in vitamin D receptor (VDR) gene on Pb-B and on the concentrations of lead in plasma (Pb-P), which is more relevant to lead toxicity, in 150 environmentally exposed subjects. Genotypes were determined by RFLP, and Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. Subjects with the bb (BsmI polymorphism) or ff (FokI polymorphism) genotypes have lower B-Pb than subjects in the other genotype groups. Subjects with the aa (ApaI polymorphism) or ff genotypes have lower P-Pb than subjects in the other genotype groups. Lower Pb-P, Pb-B, and %Pb-P/Pb-B levels were found in subjects with the haplotype combining the a, b, and f alleles for the ApaI, BsmI, and FokI polymorphisms, respectively, compared with the other haplotype groups, thus suggesting that VDR haplotypes modulate the circulating levels of lead in exposed subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are interested in determining whether low maternal vitamin D-3 affects brain development in utero. Whilst the vitamin D receptor (VDR) has been identified in embryonic rat brains, the timing and magnitude of its expression across the brain remains unclear. In this study we have quantitated VDR expression during development as well correlated the timing of its appearance with two vital developmental events, apoptosis and mitosis. Brains from embryonic rats (embryonic days 15-23) were examined. We show that the well-described increase in apoptotic cells and decrease in mitotic cells during development correlates with the appearance of the VDR in brain tissue. Given that vitamin D-3 regulates mitosis and apoptosis in non-neuronal tissue we speculate that the timing of VDR expression in embryonic brain may directly or indirectly mediate features of neuronal apoptosis and mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aim: Some studies have identified an association of kidney stone formation with vitamin D receptor (VDR) or calcium-sensing receptor (CaSR) polymorphisms. We aimed to evaluate the association between these polymorphisms with urinary calcium excretion (uCa) in calcium-stone-forming patients. Methods: VDR polymorphism, detected by BsmI digestion, and 3 CaSR polymorphisms (G/T at codon 986, G/A at codon 990 and C/G at codon 1011), detected by direct sequencing, were evaluated in 100 hypercalciuric (HCa) and 101 normocalciuric (NCa) calcium-stone-forming patients. Results: The total allelic frequency of VDR polymorphism was: 16% BB, 49% Bb and 35% bb. The prevalence of bb genotype was significantly higher in the HCa when compared to the NCa group (43 vs. 27%). With respect to CaSR polymorphisms, 986S, 990G and 1011E variant alleles were detected, respectively, in 5, 4 and 3% of the whole sample and 5 CaSR haplotypes were identified: 94% ARQ (wildtype), 3% SRQ, 1.5% AGQ, 1.0% ARE and 0.5% AGE. No statistical differences have been observed between NCa and HCa with respect to these CaSR haplotypes. Conclusions: The present study suggested that bb homozygous for VDR polymorphism was overrepresented in hypercalciuric stone formers. Urinary calcium excretion was not associated with CaSR polymorphism in the present sample. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pregnant women are particularly susceptible to toxic effects associated with lead (Pb) exposure. Pb accumulates in bone tissue and is rapidly mobilized from bones during pregnancy, thus resulting in fetal contamination. While vitamin D receptor (VDR) polymorphisms modify bone mineralization and affect Pb biomarkers including blood (Pb-B) and serum (Pb-S) Pb concentrations, and %Pb-S/Pb-B ratio, the effects of these polymorphisms on Pb levels in pregnant women are unknown. This study aimed at examining the effects of three (Fokl, Bsml and Apal) VDR polymorphisms (and VDR haplotypes) on Pb levels in pregnant women. Pb-B and Pb-S were determined by inductively coupled plasma mass spectrometry in samples from 256 healthy pregnant women and their respective umbilical cords. Genotypes for the VDR polymorphisms were determined by PCR and restriction fragment length digestion. While the three VDR polymorphisms had no significant effects on Pb-B, Pb-S or %Pb-S/Pb-B ratio, the haplotype combining the f, a, and b alleles for the Fokl, Apal and Bsml polymorphisms, respectively, was associated with significantly lower Pb-S and %Pb-S/Pb-B (P<0.05). However, maternal VDR haplotypes had no effects on Pb levels in the umbilical cords. To our knowledge, this is the first study showing that a combination of genetic polymorphisms (haplotype) commonly found in the VDR gene affects Pb-S and %Pb-S/Pb-B ratios in pregnant women. These findings may have major implications for Pb toxicity because they may help to predict the existence of a group of subjects that is genetically less prone to Pb toxicity during pregnancy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent clinical research suggests a role for vitamin D in the response to IFN-α-based therapy of chronic hepatitis C. Therefore, we aimed to explore the underlying mechanisms in vitro. Huh-7.5 cells harboring subgenomic hepatitis C virus (HCV) replicons or infected with cell culture-derived HCV were exposed to bioactive 1,25-dihydroxyvitamin D3 (calcitriol) with or without IFN-α. In these experiments, calcitriol alone had no effect on the HCV life cycle. However, calcitriol enhanced the inhibitory effect of IFN-α on HCV replication. This effect was based on a calcitriol-mediated increase of IFN-α-induced gene expression. Further mechanistic studies revealed a constitutive inhibitory interaction between the inactive vitamin D receptor (VDR) and Stat1, which was released upon stimulation with calcitriol and IFN-α. As a consequence, IFN-α-induced binding of phosphorylated Stat1 to its DNA target sequences was enhanced by calcitriol. Importantly, and in line with these observations, silencing of the VDR resulted in an enhanced hepatocellular response to IFN-α. Our findings identify the VDR as a novel suppressor of IFN-α-induced signaling through the Jak-STAT pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the association between vitamin D receptor (VDR) polymorphism and bone mineral density (BMD) in different populations have produced conflicting results probably due to ethnic differences in the populations studied. The Brazilian population is characterized by a very broad genetic background and a high degree of miscegenation. Of an initial group of 164, we studied 127 women from the city of São Paulo, aged 20 to 47 years (median, 31 years), with normal menses, a normal diet and no history of diseases or use of any medication that could alter BMD. VDR genotype was assessed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. BMD was measured using dual energy X-ray absorptiometry (Lunar DPX) at the lumbar site (L2-L4) and femoral neck. Most of the women (77.6%) were considered to be of predominantly European ancestry (20.6% of them reported also native American ancestry), 12.8% were of African-Brazilian ancestry and 9.6% of Asian ancestry, 41.0% (52) were classified as bb, 48.8% (62) as Bb and 10.2% (13) as BB. The BB, Bb and bb groups did not differ in age, height, weight, body mass index or age at menarche. Lumbar spine BMD was significantly higher in the bb group (1.22 ± 0.16 g/cm²) than in the BB group (1.08 ± 0.14; P<0.05), and the Bb group presented an intermediate value (1.17 ± 0.15). Femoral neck BMD was higher in the bb group (0.99 ± 0.11 g/cm²) compared to Bb (0.93 ± 0.12) and BB (0.90 ± 0.09) (P<0.05). These data indicate that there is a significant correlation between the VDR BsmI genotype and BMD in healthy Brazilian premenopausal females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractures are the feared consequences of osteoporosis and fractures of the proximal femur (FPF) are those that involve the highest morbidity and mortality. Thus far, evaluation of bone mineral density (BMD) is the best way to determine the risk of fracture. Genetic inheritance, in turn, is one of the major determinants of BMD. A correlation between different genotypes of the vitamin D receptor (VDR) and BMD has been recently reported. On this basis, we decided to determine the importance of the determination of VDR genotype in the presence of an osteoporotic FPF in a Brazilian population. We studied three groups: group I consisted of 73 elderly subjects older than 65 years (78.5 ± 7.2 years) hospitalized for nonpathological FPF; group II consisted of 50 individuals older than 65 years (72.9 ± 5.2 years) without FPF and group III consisted of 98 young normal Brazilian individuals aged 32.6 ± 6.6 years (mean ± SD). Analysis of VDR gene polymorphism by restriction fragment length polymorphism (RFLP) was performed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. The genotype distribution in group I was 20.5% BB, 42.5% Bb and 37% bb and did not differ significantly from the values obtained for group II (16% BB, 36% Bb and 48% bb) or for group III (10.2% BB, 47.6% Bb and 41.8% bb). No differences in genotype distribution were observed between sexes or between the young and elderly groups. We conclude that determination of VDR polymorphism is of no practical use for the prediction of FPF. Other nongenetic factors probably start to affect bone mass, the risk to fall and consequently the occurrence of osteoporotic fractures with advancing age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A close correlation between vitamin D receptor (VDR) abundance and cell proliferation rate has been shown in NIH-3T3 fibroblasts, MCF-7 breast cancer and in HL-60 myeloblastic cells. We have now determined if this association occurs in other leukemic cell lines, U937 and K562, and if VDR content is related to c-myc expression, which is also linked to cell growth state. Upon phorbol myristate acetate (PMA) treatment, cells from the three lineages (HL-60, U937 and K562) differentiated and expressed specific surface antigens. All cell lines analyzed were growth inhibited by PMA and the doubling time was increased, mainly due to an increased fraction of cells in the G0/G1 phase, as determined by flow cytometry measurements of incorporated bromodeoxyuridine and cell DNA content. C-myc mRNA expression was down-regulated and closely correlated to cell growth arrest. However, VDR expression in leukemic cell lines, as determined by immunofluorescence and Northern blot assays, was not consistently changed upon inhibition of cell proliferation since VDR levels were down-regulated only in HL-60 cells. Our data suggest that VDR expression cannot be explained simply as a reflection of the leukemic cell growth state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: 25-hydroxyvitamin D (25OHD) concentrations have been shown to be associated with major clinical outcomes, with a suggestion that individual risk may vary according to common genetic differences in the vitamin D receptor (VDR) gene. Hence, we tested for the interactions between two previously studied VDR polymorphisms and 25OHD on metabolic and cardiovascular disease-related outcomes in a large population-based study. METHODS: Interactions between two previously studied VDR polymorphisms (rs7968585 and rs2239179) and 25OHD concentrations on metabolic and cardiovascular disease-related outcomes such as obesity- (body mass index, waist circumference, waist-hip ratio (WHR)), cardiovascular- (systolic and diastolic blood pressure), lipid- (high- and low-density lipoprotein, triglycerides, total cholesterol), inflammatory- (C-reactive protein, fibrinogen, insulin growth factor-1, tissue plasminogen activator) and diabetes- (glycated haemoglobin) related markers were examined in the 1958 British Birth cohort (n up to 5160). Interactions between each SNP and 25OHD concentrations were assessed using linear regression and the likelihood ratio test. RESULTS: After Bonferroni correction, none of the interactions reached statistical significance except for the interaction between the VDR SNP rs2239179 and 25OHD concentrations on waist-hip ratio (WHR) (P=0.03). For every 1nmol/L higher 25OHD concentrations, the association with WHR was stronger among those with two major alleles (-4.0%, P=6.26e-24) compared to those with either one or no major alleles (-2.3%, P≤8.201e-07, for both) of the VDR SNP rs2239179. CONCLUSION: We found no evidence for VDR polymorphisms acting as major modifiers of the association between 25OHD concentrations and cardio-metabolic risk. Interaction between VDR SNP rs2239179 and 25OHD on WHR warrants further confirmation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is the most common medical disorder in pregnancy, and a leading cause of maternal and neonatal morbidity and mortality. Vitamin D endocrine system has important influence on immune modulation and endothelial function, which play a role in preeclampsia (PE) and gestational hypertension (GH). Vitamin D receptor (VDR) is present in a large variety of cell types, including placental cells. We examined whether there is an association between VDR polymorphisms (FokI, ApaI and BsmI) with PE or with GH. Restriction fragment length polymorphism techniques were used to genotype 529 pregnant (154 with GH, 162 with PE, and 213 healthy pregnant-HP). VDR haplotype frequencies were inferred using the PHASE 2.1 program. We found similar genotype distributions for the three VDR polymorphisms in both PE and GH groups compared with the HP group (all P > 0.05). In parallel with these findings, the VDR haplotype frequency distribution was similar in both PE and GH groups compared with the HP group (all P > 0.05). Our results showing no significant association between VDR polymorphisms or haplotypes with PE or GH suggest that genetic variations in VDR do not predispose to hypertensive disorders of pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin D, the major steroid hormone that controls mineral ion homeostasis, exerts its actions through the vitamin D receptor (VDR). The VDR is expressed in many tissues, including several tissues not thought to play a role in mineral metabolism. Studies in kindreds with VDR mutations (vitamin D-dependent rickets type II, VDDR II) have demonstrated hypocalcemia, hyperparathyroidism, rickets, and osteomalacia. Alopecia, which is not a feature of vitamin D deficiency, is seen in some kindreds. We have generated a mouse model of VDDR II by targeted ablation of the second zinc finger of the VDR DNA-binding domain. Despite known expression of the VDR in fetal life, homozygous mice are phenotypically normal at birth and demonstrate normal survival at least until 6 months. They become hypocalcemic at 21 days of age, at which time their parathyroid hormone (PTH) levels begin to rise. Hyperparathyroidism is accompanied by an increase in the size of the parathyroid gland as well as an increase in PTH mRNA levels. Rickets and osteomalacia are seen by day 35; however, as early as day 15, there is an expansion in the zone of hypertrophic chondrocytes in the growth plate. In contrast to animals made vitamin D deficient by dietary means, and like some patients with VDDR II, these mice develop progressive alopecia from the age of 4 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are mediated by the vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators. We have identified upstream exons of the human (h) VDR gene that are incorporated into variant transcripts, two of which encode N-terminal variant receptor proteins. Expression of the hVDR gene, which spans more than 60 kb and consists of at least 14 exons, is directed by two distinct promoters. A tissue-specific distal promoter generates unique transcripts in tissues involved in calcium regulation by 1,25-(OH)2D3 and can direct the expression of a luciferase reporter gene in a cell line-specific manner. These major N-terminal differences in hVDR transcripts, potentially resulting in structural differences in the expressed receptor, may contribute to cellular responsiveness to 1,25-(OH)2D3 through tissue differences in the regulation of VDR expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1,25-dihydroxyvitamin D3 [1,25-(OH)2vitamin D3] analog KH1060 exerts very potent effects on cell proliferation and cell differentiation via the vitamin D receptor (VDR). However, the activities of KH1060 are not associated with an increased affinity for the VDR. We now show that increased stabilization of the VDR-KH1060 complex could be an explanation for its high potencies. VDR half-life studies performed with cycloheximide-translational blocked rat osteoblast-like ROS 17/2.8 cells demonstrated that, in the absence of ligand, VDR levels rapidly decreased. After 2 hr, less than 10% of the initial VDR level could be measured. In the presence of 1,25-(OH)2vitamin D3, the VDR half-life was 15 hr. After 24 hr. less than 20% of the initial VDR content was detectable, whereas, at this time-point, when the cells were incubated with KH1060 80% of the VDR was still present. Differences in 1,25-(OH)2vitamin D3- and KH1060-induced conformational changes of the VDR could underlie the increased VDR stability. As assessed by limited proteolytic digestion analysis, both 1,25-(OH)2vitamin D3 and KH1060 caused a specific conformational change of the VDR. Compared with 1,25-(OH)2vitamin D3, KH1060 induced a conformational change that led to a far more dramatic protection of the VDR against proteolytic degradation. In conclusion, the altered VDR stability and the possibly underlying change in VDR conformation caused by KH1060 could be an explanation for its enhanced bioactivity.