819 resultados para Visual surveillance, Human activity recognition, Video annotation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human Activity Recognition (HAR) is an emerging research field with the aim to identify the actions carried out by a person given a set of observations and the surrounding environment. The wide growth in this research field inside the scientific community is mainly explained by the high number of applications that are arising in the last years. A great part of the most promising applications are related to the healthcare field, where it is possible to track the mobility of patients with motor dysfunction as also the physical activity in patients with cardiovascular risk. Until a few years ago, by using distinct kind of sensors, a patient follow-up was possible. However, far from being a long-term solution and with the smartphone irruption, that monitoring can be achieved in a non-invasive way by using the embedded smartphone’s sensors. For these reasons this Final Degree Project arises with the main target to evaluate new feature extraction techniques in order to carry out an activity and user recognition, and also an activity segmentation. The recognition is done thanks to the inertial signals integration obtained by two widespread sensors in the greater part of smartphones: accelerometer and gyroscope. In particular, six different activities are evaluated walking, walking-upstairs, walking-downstairs, sitting, standing and lying. Furthermore, a segmentation task is carried out taking into account the activities performed by thirty users. This can be done by using Hidden Markov Models and also a set of tools tested satisfactory in speech recognition: HTK (Hidden Markov Model Toolkit).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Reconocimiento de Actividades Humanas es un área de investigación emergente, cuyo objetivo principal es identificar las acciones realizadas por un sujeto analizando las señales obtenidas a partir de unos sensores. El rápido crecimiento de este área de investigación dentro de la comunidad científica se explica, en parte, por el elevado número de aplicaciones que están surgiendo en los últimos años. Gran parte de las aplicaciones más prometedoras se encuentran en el campo de la salud, donde se puede hacer un seguimiento del nivel de movilidad de pacientes con trastornos motores, así como monitorizar el nivel de actividad física en pacientes con riesgo cardiovascular. Hasta hace unos años, mediante el uso de distintos tipos de sensores se podía hacer un seguimiento del paciente. Sin embargo, lejos de ser una solución a largo plazo y gracias a la irrupción del teléfono inteligente, este seguimiento se puede hacer de una manera menos invasiva, haciendo uso de la gran variedad de sensores integrados en este tipo de dispositivos. En este contexto nace este Trabajo de Fin de Grado, cuyo principal objetivo es evaluar nuevas técnicas de extracción de características para llevar a cabo un reconocimiento de actividades y usuarios así como una segmentación de aquellas. Este reconocimiento se hace posible mediante la integración de señales inerciales obtenidas por dos sensores presentes en la gran mayoría de teléfonos inteligentes: acelerómetro y giróscopo. Concretamente, se evalúan seis tipos de actividades realizadas por treinta usuarios: andar, subir escaleras, bajar escaleras, estar sentado, estar de pie y estar tumbado. Además y de forma paralela, se realiza una segmentación temporal de los distintos tipos de actividades realizadas por dichos usuarios. Todo ello se llevará a cabo haciendo uso de los Modelos Ocultos de Markov, así como de un conjunto de herramientas probadas satisfactoriamente en reconocimiento del habla: HTK (Hidden Markov Model Toolkit).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solutions proposed in this thesis contribute to improve gait recognition performance in practical scenarios that further enable the adoption of gait recognition into real world security and forensic applications that require identifying humans at a distance. Pioneering work has been conducted on frontal gait recognition using depth images to allow gait to be integrated with biometric walkthrough portals. The effects of gait challenging conditions including clothing, carrying goods, and viewpoint have been explored. Enhanced approaches are proposed on segmentation, feature extraction, feature optimisation and classification elements, and state-of-the-art recognition performance has been achieved. A frontal depth gait database has been developed and made available to the research community for further investigation. Solutions are explored in 2D and 3D domains using multiple images sources, and both domain-specific and independent modality gait features are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel multiview fusion scheme for recognizing human identity based on gait biometric data. The gait biometric data is acquired from video surveillance datasets from multiple cameras. Experiments on publicly available CASIA dataset show the potential of proposed scheme based on fusion towards development and implementation of automatic identity recognition systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.