912 resultados para Visual stimulus generation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of visual stimuli intensity on manual reaction time (RT) was investigated under two different attentional settings: high (Experiment 1) and low (Experiment 2) stimulus location predictability. These two experiments were also run under both binocular and monocular viewing conditions. We observed that RT decreased as stimulus intensity increased. It also decreased as the viewing condition was changed from monocular to binocular as well as the location predictability shifted from low to high. A significant interaction was found between stimulus intensity and viewing condition, but no interaction was observed between neither of these factors and location predictability. These findings support the idea that the stimulus intensity effect arises from purely sensory, pre-attentive mechanisms rather than deriving from more efficient attentional capture. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance on interval timing is often explained by the assumption of an internal clock based on neural counting. According to this account, a neural pacemaker generates pulses, and the number of pulses relating to a physical time interval is recorded by a counter. Thus, the number of accumulated pulses is the internal representation of this interval. Several studies demonstrated that large visual stimuli are perceived to last longer than smaller ones presented for the same duration. The present study was designed to investigate whether nontemporal visual stimulus size directly affects the internal clock. For this purpose, a temporal reproduction task was applied. Sixty participants were randomly assigned to one of two experimental conditions with stimulus size being experimentally varied within either the target or the reproduction interval. A direct effect of nontemporal stimulus size on the pacemaker-counter system should become evident irrespective of whether stimulus size was experimentally varied within the target or the reproduction interval. An effect of nontemporal stimulus size on reproduced duration only occurred when stimulus size was varied during the target interval. This finding clearly argues against the notion that nontemporal visual stimulus size directly affects the internal clock. Furthermore, our findings ruled out a decisional bias as a possible cause of the observed differential effect of stimulus size on reproduced duration. Rather the effect of stimulus size appeared to originate from the memory stage of temporal information processing at which the timing signal from the pacemaker-counter component is encoded in reference memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a visual stimulus generator (VSImG) capable of displaying a gray-scale, 256 x 256 x 8 bitmap image with a frame rate of 500 Hz using a boustrophedonic scanning technique. It is designed for experiments with motion-sensitive neurons of the fly`s visual system, where the flicker fusion frequency of the photoreceptors can reach up to 500 Hz. Devices with such a high frame rate are not commercially available, but are required, if sensory systems with high flicker fusion frequency are to be studied. The implemented hardware approach gives us complete real-time control of the displacement sequence and provides all the signals needed to drive an electrostatic deflection display. With the use of analog signals, very small high-resolution displacements, not limited by the image`s pixel size can be obtained. Very slow image displacements with visually imperceptible steps can also be generated. This can be of interest for other vision research experiments. Two different stimulus files can be used simultaneously, allowing the system to generate X-Y displacements on one display or independent movements on two displays as long as they share the same bitmap image. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top–down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2–10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top–down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2–10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il est bien connu des professionnels de la vision que l’ajustement des verres progressifs sur un patient presbyte peut induire de l’inconfort et des difficultés posturales (Timmis, Johnson, Elliott, & Buckley, 2010). Ces plaintes sont directement associées à l’information visuelle perçue à travers les verres progressifs. Le principal objectif de cette thèse est d’identifier quels sont les paramètres d’un stimulus visuel (p.ex. fréquence temporelle ou vélocité) à l’origine de la perturbation posturale et de l’inconfort. Les distorsions dynamiques perçues à travers des verres progressifs s’apparentent aux mouvements d’un bateau qui roule de droite à gauche ou qui tangue d’avant en arrière. Ce type de stimulation visuelle a été reproduit dans une voute d’immersion en réalité virtuelle avec un sol à texture de damier noir et blanc qui oscillait périodiquement de droite à gauche et d’avant en arrière à différentes fréquences et amplitudes. Les études qui portent sur ce sujet montrent que la réponse posturale induite visuellement augmente avec la vélocité de stimulation et diminue lorsque la fréquence augmente. Cette information peut paraitre contradictoire, car ces deux variables sont liées entre elles par l’amplitude et covarient dans le même sens. Le premier objectif de cette thèse était de déterminer les causes possibles de cette contradiction. En faisant varier la fréquence temporelle de stimulation visuelle, on retrouve deux domaines de réponse posturale. Le premier domaine correspond aux fréquences inférieures à 0,12 Hz. Dans ce domaine, la réponse posturale est visuodépendante et augmente avec la vélocité du stimulus. Le second domaine postural correspond aux fréquences supérieures à 0,25 Hz. Dans ce domaine, la réponse posturale sature et diminue avec l’augmentation de la fréquence. Cette saturation de la réponse posturale semble causée par des limitations biomécaniques et fréquentielles du système postural. D’autres études ont envisagé d’étudier l’inconfort subjectif induit par des stimuli visuels périodiques. Au sein de la communauté scientifique, deux théories principales se confrontent. La théorie sensorielle repose sur les conflits sensoriels induit par le stimulus visuel tandis que la théorie posturale suggère que l’inconfort est la conséquence de l’instabilité posturale. Nos résultats révèlent que l’inconfort subjectif induit par une stimulation visuelle dynamique dépend de la vélocité du stimulus plutôt que de sa fréquence. L’inconfort peut être prédit par l’instabilité naturelle des individus en l’absence de stimulus visuel comme le suggère la théorie posturale. Par contre, l’instabilité posturale induite par un stimulus visuel dynamique ne semble pas être une condition nécessaire et suffisante pour entrainer de l’inconfort. Ni la théorie sensorielle ni la théorie posturale ne permettent à elles seules d’expliquer tous les mécanismes à l’origine de l’inconfort subjectif. Ces deux théories sont complémentaires, l’une expliquant que l’instabilité intrinsèque est un élément prédictif de l’inconfort et l’autre que l’inconfort induit par un stimulus visuel dynamique résulte d’un conflit entre les entrées sensorielles et les représentations acquises par l’individu.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The coding of body part location may depend upon both visual and proprioceptive information, and allows targets to be localized with respect to the body. The present study investigates the interaction between visual and proprioceptive localization systems under conditions of multisensory conflict induced by optokinetic stimulation (OKS). Healthy subjects were asked to estimate the apparent motion speed of a visual target (LED) that could be located either in the extrapersonal space (visual encoding only, V), or at the same distance, but stuck on the subject's right index finger-tip (visual and proprioceptive encoding, V-P). Additionally, the multisensory condition was performed with the index finger kept in position both passively (V-P passive) and actively (V-P active). Results showed that the visual stimulus was always perceived to move, irrespective of its out- or on-the-body location. Moreover, this apparent motion speed varied consistently with the speed of the moving OKS background in all conditions. Surprisingly, no differences were found between V-P active and V-P passive conditions in the speed of apparent motion. The persistence of the visual illusion during the active posture maintenance reveals a novel condition in which vision totally dominates over proprioceptive information, suggesting that the hand-held visual stimulus was perceived as a purely visual, external object despite its contact with the hand.