980 resultados para Visual detection
Resumo:
Due to advances in information technology (e.g., digital video cameras, ubiquitous sensors), the automatic detection of human behaviors from video is a very recent research topic. In this paper, we perform a systematic and recent literature review on this topic, from 2000 to 2014, covering a selection of 193 papers that were searched from six major scientific publishers. The selected papers were classified into three main subjects: detection techniques, datasets and applications. The detection techniques were divided into four categories (initialization, tracking, pose estimation and recognition). The list of datasets includes eight examples (e.g., Hollywood action). Finally, several application areas were identified, including human detection, abnormal activity detection, action recognition, player modeling and pedestrian detection. Our analysis provides a road map to guide future research for designing automatic visual human behavior detection systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Research, Washington, D.C.
Resumo:
The orientations of lines and edges are important in defining the structure of the visual environment, and observers can detect differences in line orientation within the first few hundred milliseconds of scene viewing. The present work is a psychophysical investigation of the mechanisms of early visual orientation-processing. In experiments with briefly presented displays of line elements, observers indicated whether all the elements were uniformly oriented or whether a uniquely oriented target was present among uniformly oriented nontargets. The minimum difference between nontarget and target orientations that was required for effective target-detection (the orientation increment threshold) varied little with the number of elements and their spatial density, but the percentage of correct responses in detection of a large orientation-difference increased with increasing element density. The differing variations with element density of thresholds and percent-correct scores may indicate the operation of more than one mechanism in early visual orientation-processIng. Reducing element length caused threshold to increase with increasing number of elements, showing that the effectiveness of rapid, spatially parallel orientation-processing depends on element length. Orientational anisotropy in line-target detection has been reported previously: a coarse periodic variation and some finer variations in orientation increment threshold with nontarget orientation have been found. In the present work, the prominence of the coarse variation in relation to finer variations decreased with increasing effective viewing duration, as if the operation of coarse orientation-processing mechanisms precedes the operation of finer ones. Orientational anisotropy was prominent even when observers lay horizontally and viewed displays by looking upwards through a black cylinder that excluded all possible visual references for orientation. So, gravitational and visual cues are not essential to the definition of an orientational reference frame for early vision, and such a reference can be well defined by retinocentric neural coding, awareness of body-axis orientation, or both.
Resumo:
This thesis consisted of two major parts, one determining the masking characteristics of pixel noise and the other investigating the properties of the detection filter employed by the visual system. The theoretical cut-off frequency of white pixel noise can be defined from the size of the noise pixel. The empirical cut-off frequency, i.e. the largest size of noise pixels that mimics the effect of white noise in detection, was determined by measuring contrast energy thresholds for grating stimuli in the presence of spatial noise consisting of noise pixels of various sizes and shapes. The critical i.e. minimum number of noise pixels per grating cycle needed to mimic the effect of white noise in detection was found to decrease with the bandwidth of the stimulus. The shape of the noise pixels did not have any effect on the whiteness of pixel noise as long as there was at least the minimum number of noise pixels in all spatial dimensions. Furthermore, the masking power of white pixel noise is best described when the spectral density is calculated by taking into account all the dimensions of noise pixels, i.e. width, height, and duration, even when there is random luminance only in one of these dimensions. The properties of the detection mechanism employed by the visual system were studied by measuring contrast energy thresholds for complex spatial patterns as a function of area in the presence of white pixel noise. Human detection efficiency was obtained by comparing human performance with an ideal detector. The stimuli consisted of band-pass filtered symbols, uniform and patched gratings, and point stimuli with randomised phase spectra. In agreement with the existing literature, the detection performance was found to decline with the increasing amount of detail and contour in the stimulus. A measure of image complexity was developed and successfully applied to the data. The accuracy of the detection mechanism seems to depend on the spatial structure of the stimulus and the spatial spread of contrast energy.
Resumo:
Alpha oscillatory activity has long been associated with perceptual and cognitive processes related to attention control. The aim of this study is to explore the task-dependent role of alpha frequency in a lateralized visuo-spatial detection task. Specifically, the thesis focuses on consolidating the scientific literature's knowledge about the role of alpha frequency in perceptual accuracy, and deepening the understanding of what determines trial-by-trial fluctuations of alpha parameters and how these fluctuations influence overall task performance. The hypotheses, confirmed empirically, were that different implicit strategies are put in place based on the task context, in order to maximize performance with optimal resource distribution (namely alpha frequency, associated positively with performance): “Lateralization” of the attentive resources towards one hemifield should be associated with higher alpha frequency difference between contralateral and ipsilateral hemisphere; “Distribution” of the attentive resources across hemifields should be associated with lower alpha frequency difference between hemispheres; These strategies, used by the participants according to their brain capabilities, have proven themselves adaptive or maladaptive depending on the different tasks to which they have been set: "Distribution" of the attentive resources seemed to be the best strategy when the distribution probability between hemifields was balanced: i.e. the neutral condition task. "Lateralization" of the attentive resources seemed to be more effective when the distribution probability between hemifields was biased towards one hemifield: i.e., the biased condition task.
Resumo:
The goal of this study was to examine the coupling between visual information and body sway with binocular and monocular vision at two distances from the front wall of a moving room. Ten participants stood as still as possible inside of a moving room facing the front wall in conditions that combined room movement with monocular/binocular vision and distance from the front wall (75 and 150cm). Visual information effect on body sway decreased with monocular vision and with increased distance from the front wall. In addition, the combination of monocular vision with the farther distance resulted in the smallest body sway response to the driving stimulus provided by the moving room. These results suggest that binocularvision near the front wall provides visual information of a better quality than the monocular vision far from the front wall. We discuss the results with respect to two modes of visual detection of body sway: ocular and extraocular. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
Several non-invasive and novel aids for the detection of (and in some cases monitoring of) caries lesions have been introduced in the field of 'caries diagnostics' over the last 15 years. This chapter focusses on those available to dentists at the time of writing; continuing research is bound to lead to further developments in the coming years. Laser fluorescence is based on measurements of back-scattered fluorescence of a 655-nm light source. It enhances occlusal and (potentially) approximal lesion detection and enables semi-quantitative caries monitoring. Systematic reviews have identified false-positive results as a limitation. Quantitative light-induced fluorescence is another sensitive method to quantitatively detect and measure mineral loss both in enamel and some dentine lesions; again, the trade-offs with lower specificity when compared with clinical visual detection must be considered. Subtraction radiography is based on the principle of digitally superimposing two radiographs with exactly the same projection geometry. This method is applicable for approximal surfaces and occlusal caries involving dentine but is not yet widely available. Electrical caries measurements gather either site-specific or surface-specific information of teeth and tooth structure. Fixed-frequency devices perform best for occlusal dentine caries but the method has also shown promise for lesions in enamel and other tooth surfaces with multi-frequency approaches. All methods require further research and further validation in well-designed clinical trials. In the future, they could have useful applications in clinical practice as part of a personalized, comprehensive caries management system.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
As it is known, there are five types of neurons in the mammalian retinal layer allowing the detection of several important characteristics of the visual image impinging onto the visual system, namely, photoreceptors, horizontal cells, amacrine, bipolar and ganglion cells. And it is a well known fact too, that the amacrine neuron architecture allows a first detection for objects motion, being the most important retinal cell to this function. We have already studied and simulated the Dowling retina model and we have verified that many complex processes in visual detection is performed with the basis of the amacrine cell synaptic connections. This work will show how this structure may be employed for motion detection