911 resultados para Visual data exploration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As technological capabilities for capturing, aggregating, and processing large quantities of data continue to improve, the question becomes how to effectively utilise these resources. Whenever automatic methods fail, it is necessary to rely on human background knowledge, intuition, and deliberation. This creates demand for data exploration interfaces that support the analytical process, allowing users to absorb and derive knowledge from data. Such interfaces have historically been designed for experts. However, existing research has shown promise in involving a broader range of users that act as citizen scientists, placing high demands in terms of usability. Visualisation is one of the most effective analytical tools for humans to process abstract information. Our research focuses on the development of interfaces to support collaborative, community-led inquiry into data, which we refer to as Participatory Data Analytics. The development of data exploration interfaces to support independent investigations by local communities around topics of their interest presents a unique set of challenges, which we discuss in this paper. We present our preliminary work towards suitable high-level abstractions and interaction concepts to allow users to construct and tailor visualisations to their own needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the use of the FAB-MAP appearance-only SLAM algorithm as a method for performing visual data association for RatSLAM, a semi-metric full SLAM system. While both systems have shown the ability to map large (60-70km) outdoor locations of approximately the same scale, for either larger areas or across longer time periods both algorithms encounter difficulties with false positive matches. By combining these algorithms using a mapping between appearance and pose space, both false positives and false negatives generated by FAB-MAP are significantly reduced during outdoor mapping using a forward-facing camera. The hybrid FAB-MAP-RatSLAM system developed demonstrates the potential for successful SLAM over large periods of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After earthquakes, licensed inspectors use the established codes to assess the impact of damage on structural elements. It always takes them days to weeks. However, emergency responders (e.g. firefighters) must act within hours of a disaster event to enter damaged structures to save lives, and therefore cannot wait till an official assessment completes. This is a risk that firefighters have to take. Although Search and Rescue Organizations offer training seminars to familiarize firefighters with structural damage assessment, its effectiveness is hard to guarantee when firefighters perform life rescue and damage assessment operations together. Also, the training is not available to every firefighter. The authors therefore proposed a novel framework that can provide firefighters with a quick but crude assessment of damaged buildings through evaluating the visible damage on their critical structural elements (i.e. concrete columns in the study). This paper presents the first step of the framework. It aims to automate the detection of concrete columns from visual data. To achieve this, the typical shape of columns (long vertical lines) is recognized using edge detection and the Hough transform. The bounding rectangle for each pair of long vertical lines is then formed. When the resulting rectangle resembles a column and the material contained in the region of two long vertical lines is recognized as concrete, the region is marked as a concrete column surface. Real video/image data are used to test the method. The preliminary results indicate that concrete columns can be detected when they are not distant and have at least one surface visible.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Version 1 of the Global Charcoal Database is now available for regional fire history reconstructions, data exploration, hypothesis testing, and evaluation of coupled climate–vegetation–fire model simulations. The charcoal database contains over 400 radiocarbon-dated records that document changes in charcoal abundance during the Late Quaternary. The aim of this public database is to stimulate cross-disciplinary research in fire sciences targeted at an increased understanding of the controls and impacts of natural and anthropogenic fire regimes on centennial-to-orbital timescales. We describe here the data standardization techniques for comparing multiple types of sedimentary charcoal records. Version 1 of the Global Charcoal Database has been used to characterize global and regional patterns in fire activity since the last glacial maximum. Recent studies using the charcoal database have explored the relation between climate and fire during periods of rapid climate change, including evidence of fire activity during the Younger Dryas Chronozone, and during the past two millennia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes how the statistical technique of cluster analysis and the machine learning technique of rule induction can be combined to explore a database. The ways in which such an approach alleviates the problems associated with other techniques for data analysis are discussed. We report the results of experiments carried out on a database from the medical diagnosis domain. Finally we describe the future developments which we plan to carry out to build on our current work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical Access Control Systems are commonly used to secure doors in buildings such as airports, hospitals, government buildings and offices. These systems are designed primarily to provide an authentication mechanism, but they also log each door access as a transaction in a database. Unsupervised learning techniques can be used to detect inconsistencies or anomalies in the mobility data, such as a cloned or forged Access Badge, or unusual behaviour by staff members. In this paper, we present an overview of our method of inferring directed graphs to represent a physical building network and the flows of mobility within it. We demonstrate how the graphs can be used for Visual Data Exploration, and outline how to apply algorithms based on Information Theory to the graph data in order to detect inconsistent or abnormal behaviour.